
FuzzifiED

Toolkit to close the gap for fuzzy sphere numerics

13 January, 2025

Abstract : Since its proposal, the fuzzy sphere regularisation has made significant contribution

to the study of 3d CFTs. The Julia package FuzzifiED is aimed at simplifying the numerical

calculations on the fuzzy sphere. It facilitates the exact diagonalisation (ED) calculations as

well as the density matrix renormalisation group (DMRG) with the help of ITensor. It can

also be used for generic fermionic and bosonic models. This documentation gives a general

introduction to the fuzzy sphere regularisation and a detailed instruction for using the package

for numerical calculations.

Documentation : https://docs.fuzzified.world

Source code : https://github.com/FuzzifiED/FuzzifiED.jl

https://docs.fuzzified.world
https://github.com/FuzzifiED/FuzzifiED.jl

Contents

1 Purpose and outline 1

I Review of fuzzy sphere 3

2 Introduction 3

2.1 Conformal field theory 3

2.2 Fuzzy sphere 5

3 Review of existing works 7

3.1 Accessing various conformal data 8

3.2 Realising various 3d CFTs 10

3.3 Studying conformal defects and boundaries 12

3.4 Other works on the fuzzy sphere 14

4 Model construction 15

4.1 Projection onto the lowest Landau level 16

4.2 Density operator 18

4.3 Density-density interaction 19

4.4 Interaction in terms of pseudopotentials 20

4.5 Operator spectrum and search for conformal point 23

4.6 Local observables 25

4.7 Conformal generators 28

5 Numerical methods 30

5.1 Exact diagonalisation (ED) 30

5.2 Density matrix renormalisation group (DMRG) 32

II Numerical calculation with FuzzifiED 33

– ii –

6 Installation and usage 33

7 Exact diagonalisation 33

7.1 Setup 34

7.2 Constructing the configurations 35

7.3 Constructing the basis 38

7.4 Recording the many-body operator terms 41

7.5 Generating sparse matrix 44

7.6 Finding eigenstates 45

7.7 Inner product of states, operators and transformations 46

7.8 Measuring local observables 47

7.9 Measuring the entanglement 49

7.10 Fuzzifino — module for boson-fermion mixture 52

8 Density matrix renormalisation group 52

8.1 DMRG with ITensor 52

8.2 The EasySweep extension 55

9 Practical examples 58

A Data structures in exact diagonalisation 61

A.1 Construction of Lin table 61

A.2 Compressed sparse column (CSC) sparse matrix 61

A.3 Indexing the boson configurations 62

B Tutorial code 63

B.1 ED using core functions 64

B.2 ED using built-in models 66

B.3 DMRG using format conversion into ITensor 68

B.4 DMRG with Easy Sweep 69

C Glossary for interfaces in FuzzifiED 71

– iii –

References 73

– iv –

1 Purpose and outline

Since its proposal, the fuzzy sphere regularisation has made significant contribution to the

study of 3d CFTs [1–17]. The Julia package FuzzifiED is aimed at simplifying the numerical

calculations on the fuzzy sphere. It facilitates the exact diagonalisation (ED) calculations as

well as the density matrix renormalisation group (DMRG) with the help of ITensor [18]. It

can also be used for generic fermionic and bosonic models. This package features the following

characteristics :

1. Versatality : FuzzifiED can help reproduce almost all the ED and DMRG results in

fuzzy sphere works, and it is easy for the adaption to new models.

2. Usability : Julia interfaces make the code intuitive and concise. To help the users get

started, we have also provided a collection of examples.

3. Efficiency : FuzzifiED can produce results on reasonable system sizes within minutes.

4. Open source : The code for FuzzifiED is fully open source.

This documentation gives a review of the fuzzy sphere regularisation and an instruction

for numerical calculations with FuzzifiED. The rest of this documentation is organised as the

follows : The Part I (Sections 2–5) is devoted to a review of the fuzzy sphere regularisation

and the numerical methods applied to it, especially targeting at providing the necessary tech-

nical information for those who want to get started with the research on fuzzy sphere. The

Part II (Sections 6–9) gives a detailed instruction for numerical calculation with the package

FuzzifiED.

• In Section 2, we make a brief introduction to the conformal field theories in dimensions

𝑑 ≥ 3 and the fuzzy sphere regularisation.

• In Section 3, we review the existing works related to the fuzzy sphere.

• In Section 4, we review the setup of fuzzy sphere, the construction of interactionmodels

and the extraction of CFT data.

• In Section 5, we review the numerical methods used in the package FuzzifiED, viz.

ED and DMRG.

• In Section 6, we give an instruction for installing and getting started with FuzzifiED.

• In Section 7, we give an instruction for performing ED calculation with FuzzifiED.

– 1 –

• In Section 8, we give an instruction for performing DMRG calculation with FuzzifiED.

• In Section 9, we present a collection of practical examples that reproduce many existing

results.

– 2 –

Part I

Review of fuzzy sphere

2 Introduction

2.1 Conformal field theory

Conformal field theory (CFT) is one of the central topics of modern physics. It refers to

a field theory that is invariant under conformal transformations that preserve the angles be-

tween vectors. In spacetime dimension 𝑑 > 2, the global conformal symmetry is generated by

translation, SO(𝑑) rotation (In this note we work in Euclidean signature. In Lorentzian sig-

nature it is the Lorentz transformation SO(1, 𝑑 − 1)), dilatation (scale transformation), and

special conformal transformation (SCT) [19, 20]. These transformations altogether generate

the conformal group SO(𝑑 + 1, 1). Each CFT operator must transform under irreducible rep-

resentations of rotation and dilatation. The representations are labelled by the SO(𝑑) spin 𝑙 and
scaling dimension Δ, respectively. A special kind of operators that are invariant under SCT

called ‘primaries’ deserve particular attension. By acting spatial derivatives on the primaries,

their ‘descendants’ are obtained. The conformal symmetry is the maximal spacetime symme-

try (except supersymmetry) that a field theory can have. It gives powerful constraint on the

property of the field theory. In particular, conformal symmetry uniquely determines the form

of two-point and three-point correlation functions. The three-point correlator of three primary

operators Φ𝑖 , Φ𝑗 , Φ𝑘 contains a universal coefficient called the OPE coefficient 𝑓Φ𝑖 Φ𝑗 Φ𝑘 . The

collection of scaling dimensions and the OPE coefficients {ΔΦ𝑖 , 𝑓Φ𝑖 Φ𝑗 Φ𝑘} is called the conformal

data. Theoretically, with full knowledge of the CFT data, an arbitrary correlation function of

a CFT can be obtained.

CFT has provided important insights into various fields of theoretical physics. In condensed

matter physics, it has produced useful prediction about the critical phenomena [21–23]. Many

classical and quantum phase transitions are conjectured to have emergent conformal symmetry

in the IR. The universal critical exponents are directly determined by the scaling dimensions

of the primary operators. E.g., in Ising transitions that spontaneously break ℤ2 symmetry,

– 3 –

most critical exponents are given by the scaling dimensions of the lowest ℤ2-odd operator 𝜎 and

ℤ2-even operator 𝜖, such as

𝜂 = 2Δ𝜎 − 1 𝜈 = 1
3 − Δ𝜖

. (2.1)

CFT is also closely related to string theory and quantum gravity in high energy physics. In the

string theory, CFT describes the 2d worldsheet [24] ; in quantum gravity, there is a conjectured

duality between the gravity theory in (𝑑+1)-dimensional anti-de Sitter (AdS) space in the bulk

and a 𝑑-dimensional CFT on the boundary [25]. Moreover, CFT plays an important role in our

understanding of quantum field theories. It describes many fixed points in the RG flow, and

many QFTs can be seen as a CFT with perturbations. It also helps us understand how physics

change under a change of scale and reveals some fundamental structure of the RG flow [26].

In 2d CFTs, besides the global conformal symmetry SO(3, 1), there also exists an infinite

dimensional local conformal symmetry [27, 28]. Altogether, they form the Virasoro algebra.

The infinite dimensional conformal algebra has made many theories exactly solvable, especially

the rational theories such as the minimal models [29] and more generally the Wess-Zumino-

Witten (WZW) theories [30, 31]. On the other hand, going to the higher dimensions, the

CFTs are much less well-studied due to a much smaller conformal group. The existing methods

include numerical conformal bootstrap and Monte Carlo lattice simulations. Numerical boostrap

bounds the conformal data by making use of consistency conditions such as reflection positivity

together with some information of the CFT such as the global symmetry and a certain amount

of assumptions [32, 33]. It has achieved great success in 3d Ising [34, 35], O(𝑁) Wilson-

Fisher [35, 36], Gross-Neveu-Yukawa CFTs [37], etc. On the other hand, one can study a

CFT by constructing a lattice model that goes through a phase transition in the corresponding

universality class, and study the phase transition by Monte Carlo simulation. This method has

achieved success in the 3d Ising universality assuming conformal symmetry [38]. However, the

extraction of universal data usually involves complicated and expensive finite-size scaling [22,

39, 40], and only the lowest few CFT operators can be accessed in this way.

Among these higher dimensional CFTs, we especially focus on 𝑑 = 3, as many Lagrangians

in 𝑑 ≥ 4 flow to free theories [23].

– 4 –

2.2 Fuzzy sphere

In addition to these existing approaches, the ‘fuzzy sphere regularisation’ has recently

emerged as a new powerful method to study 3d CFTs. The idea is to put an interacting quantum

Hamiltonian on a 2-sphere 𝑆2. This geometry preserves the full rotation symmetry (on the

contrary, lattice models often only preserve a discrete subgroup). Moreover, when the system is

tuned to a critical point or critical phase, combined with the time evolution direction, the system

is described by a quantum field theory living on a generalised cylinder 𝑆2 × ℝ, a manifold that

is conformally equivalent to flat spacetime through the Weyl transformation

(n̂, 𝜏) ∈ 𝑆2 × ℝ ⟼ 𝑟n̂ ∈ ℝ3, 𝑟 = 𝑒𝜏/𝑅 (2.2)

where 𝑅 is the radius of the sphere. This conformal transformation maps each time slice of the

cylinder to a cocentric sphere in the the flat spacetime.

Thanks to the conformal flatness that is not owned by other manifolds (e.g., a lattice model

with periodic boundary condition lives on the torus 𝑇 2 which is not conformally flat), we can

make use of some nice properties of conformal field theories, the most important one of which is

the state-operator correspondance [19, 20, 41]. Specifically, there is a one-to-one correspon-

dence between the eigenstates of the critical Hamiltonian on the sphere and the CFT operators.

One can colloquially understand the state |Φ⟩ as the insertion of the corresponding operator

Φ(0) at the origin point into the vacuum |0⟩ : |Φ⟩ = Φ̂(0)|0⟩. The state and its corresponding

operator has the same SO(3) spin and representation under global symmetry. More importantly,

as the Weyl transformation maps the Hamiltonian 𝐻 corresponding to the time translation on

the cylinder to the dilatation 𝐷 on the flat spacetime, the excitation energy of a state |Φ⟩ is

proportional to the scaling dimension of the corresponding operator ΔΦ

𝐸Φ − 𝐸0 = 𝑣
𝑅ΔΦ (2.3)

where 𝐸0 is the ground state energy, 𝑅 is the radius of the sphere, and 𝑣 is the speed of light

that is dependent on the microscopic model and is the same for every state. With this property,

one can calculate the scaling dimensions simply by obtaining the energy spectrum of the quan-

tum Hamiltonian without doing complicated finite size scalings, and one can obtain the OPE

coefficients simply from the inner product of a local operator.

– 5 –

Although the quantum Hamiltonians on a sphere enjoy the full rotation symmetry and the

property of state-operator correspondence, it is difficult to put a lattice on the sphere due to

the curvature (in particular the non-zero Euler characteristic), especially to recover an SO(3)-
symmetric theomodynamic limit [42]. An alternative way we take is to fuzzify the sphere [43].

We consider charged free particles moving on a sphere with a magnetic monopole with a flux

4𝜋𝑠 (𝑠 ∈ ℤ/2) placed at its centre. The monopole exerts a uniform magnetic field on the sphere,

which modifies the single particle Hamiltonian and the single particle eigenstates. Now the

single particle eigenstates form highly degenerate spherical Landau levels [44–47]. The lowest

Landau level has a degeneracy (2𝑠 + 1). By setting the single particle gap to be the leading

energy scale, adding interactions, and projecting onto the lowest Landau level, we obtain a finite

Hilbert space. For the purpose of numerical simulation, the system is analoguous to a length-

(2𝑠+1) spin chain with long range interaction, where different Landau level orbitals behave like

the lattice sites. The difference is that the (2𝑠 + 1) orbital forms a spin-𝑠 representation of the

SO(3) rotation group, and in this way the continuous rotation symmetry is preserved. The word

‘fuzzy’ means the non-commutativity, in our case, due to the presence of magnetic field [43, 47].

The non-commutativity provides a natural length scale which serves as a UV regulator of the

quantum field theory. The radius of the sphere scales as 𝑅 ∼ √𝑠. The thermodynic limit can

be taken as 𝑠 → ∞, and we then recover a regular sphere without non-commutativity.

The power of this approach has been first demonstrated in the context of the 3D Ising

transition [1], where the presence of emergent conformal symmetry has been convincingly es-

tablished and awealth of conformal data has been accurately computed. The study has then been

extended to accessing various conformal data such as the OPE coefficients [2], correlation func-

tions [3], entropic 𝐹 -function [10], conformal generators in the 3d Ising CFT [14, 15], study-

ing conformal defects and boundaries such as the magnetic line defect [6, 9], various conformal

boundaries in 3d Ising CFT [12, 13], and realising various 3d CFTs such as Wilson-Fisher

CFTs [8], SO(5) deconfined criticality [4], Sp(𝑁) symmetric CFTs [16], etc. In the following

sections, we shall review the existing works, technical details and the numerical methods.

– 6 –

3 Review of existing works

In this section, we review the existing works related to fuzzy sphere.

The pioneering work [1] This work first proposes the idea of fuzzy sphere and apply it to

a pedagogical example of 3d Ising CFT. This work constructs a model with two flavours of

fermions that resembles the spin-up and spin-down in the lattice transverse-field Ising model.

At half-filling, one can colloquially think that a spin degree of freedom lives on each orbital. The

Hamiltonian contains a density-density interaction that resembles the Ising ferromagnetic in-

teraction and a polarising term that resembles the transverse field. By tuning the ratio between

the two terms, a transition between quantum Hall ferromagnet [48, 49] (a two-fold degenerate

state where either of the two flavours is completely occupied) and paramagnet (a one-fold de-

generate state where the superpositions of the two flavours at each orbital are occupied) occurs.

This transition spontaneously breaks a ℤ2 symmetry and falls into the Ising criticality. This

work then makes use of a unique feature of spherical models described by CFT— state-operator

correspondence — at the critical point to extract the scaling dimensions of the scaling local op-

erators. This work finds evidence for conformal symmetry, including that (1) there exists a

conserved stress tensor with Δ = 3 (which is used as the calibrator), and (2) all the levels can

be classified into conformal multiplet where the spacing between operators’ scaling dimensions

are very close to integer. This is one of the first numerical evidence that 3d Ising transition

has emergent conformal symmetry. More remarkably, the scaling dimensions of primaries such

as 𝜎, 𝜖, 𝜖′ are already very close to the most accurate known value by numerical bootstrap with

an error within 1.2% at a small system size 𝑁𝑚 = 16, for which the computational cost is

comparable to a 4 × 4 lattice system. The structure of Ising CFT operator spectrum already

starts to show up at an even smaller system size 𝑁𝑚 = 4. All these clues point towards a

curious observation that fuzzy sphere suffers from a remarkably small finite-size effect. The

detail for the construction of models is given in Sections 4.3 and 4.4, and the detail for analysis

of spectrum is given in Section 4.5.

This seminal work opens a new avenue for studying 3d conformal field theories. After that,

most of the researches on fuzzy sphere can roughly be catagorised into three directions (with

several exceptions) :

– 7 –

1. Accessing various conformal data,

2. Realising various 3d CFTs, and

3. Studying conformal defects and boundaries.

3.1 Accessing various conformal data

The first direction is to develop methods to calculate various data and quantities of 3d CFTs

on fuzzy sphere. Typically, these methods are tested on the simplest example of 3d Ising CFT.

For many of those CFT data, fuzzy sphere is the first non-perturbative method to access them ;

for the others, the fuzzy sphere has achieved great consistency with previous methods such

as quantum Monte Carlo and conformal bootstrap. So far, the accessible CFT data include

operator spectrum, OPE coefficients [2], correlation functions [3], entropic 𝐹 -function [10]

and conformal generators [14, 15].

OPE coefficients [2] Apart from the operator spectrum, a wealth of CFT data can be obtained

from the local operators. This work studies the local observables on the fuzzy sphere, including

the density operators and certain four-fermion operators. These observables can be expressed

as the linear combination of CFT local scaling operators. After a finite size scaling that takes

into account the data from different system sizes, the subleading contribution can be substracted

and only the leading contribution are left. In this way, the lowest primaries in Ising CFT in each

symmetry sector, viz. ℤ2-odd 𝜎 and ℤ2-even 𝜖, can be realised. The OPE coefficients are then

evaluated by taking the inner product of a fuzzy sphere local observable with two CFT states

⟨Φ1|Φ2(n̂)|Φ3⟩. This work computes 17 OPE coefficients of low-lying CFT primary fields with

high accuracy, including 4 that has not being reported before. The rest are consistent with

numerical bootstrap results. It is also worth noting that this work starts to apply DMRG to

the fuzzy sphere. The maximal system size is increased from 𝑁𝑚 = 18 by ED to 𝑁𝑚 = 48 by

DMRG. The detail for calculating the OPE coefficient is given in Section 4.6.

Correlation functions [3] In addition to the OPE coefficients, the local observables can also

be used to calculate correlation functions. By taking the inner product of two local observables

(density operators) at a time displacement ⟨Φ1|Φ2(n̂0)Φ3(n̂, 𝜏)|Φ4⟩ with two CFT states, a

general four-point function can be calculated. This piece of CFT data in practice cannot be

– 8 –

derived from the rest due to the existence of infinitely many primaries. This work calculates

this four-point function in 3d Ising CFT with DMRG. A non-trivial check of conformality,

the crossing symmetry, is verified for the correlator ⟨𝜎𝜎𝜎𝜎⟩. The special case — two-point

functions by taking Φ1 = Φ4 = 𝕀 —are also studied and compared with the expected results by

conformal symmetry. The detail for calculating the correlation functions is given in Section 4.6.

Entropic 𝐹 -function [10] Beyond the correlators of local operators, a wealth of information

can be learnt from the entanglement entropy and entanglement spectrum. A remarkable quan-

tity is called the 𝐹 -function, which is defined through the scaling behaviour of the entanglement

entropy [50–54]. Specifically, consider a quantum system that lives on ℝ2. A circle with radius

𝑅𝑑 divides the system into inner part 𝐴 and outer part 𝐵. The entanglement entropy is defined

and expected to scale with 𝑅𝑑 as

𝑆𝐴(𝑅𝑑) = tr𝐴 𝜌 log 𝜌 = 𝛼𝑅𝑑/𝛿 − 𝐹 (3.1)

where 𝛿 is a UV-regulator. The constant part is known as the 𝐹 -function of a 3d CFT. The

𝐹 -function is proved to be RG-monotonic, i.e., along a renormalisation group flow from UV

to IR, the value of 𝐹 -function is non-increasing, analogous to the central charge in 2d CFTs.

Despite its importance, it has never been calculated before through non-perturbative approaches

in interacting 3d CFTs. This work has performed the first non-perturbative computation of 𝐹
function for paradigmatic 3d Ising CFT on fuzzy sphere. The sphere is cut in the real space

into two crowns along a latitude circle 𝜃, and the entanglement entropy 𝑆𝐴(𝜃) as a function of

𝜃 is calculated [55–58]. The 𝐹 -function is extracted from the 𝑆𝐴(𝜃) in vicinity of the equator,

and the result yields 𝐹𝐴 = 0.0612(5) after a finite size scaling.

Conformal generators [14, 15] Within the generators of conformal symmetry, the SO(3)
rotation and the dilatation are manifest and act as rotation and time translation on fuzzy sphere.

The rest two, viz. translation 𝑃 𝜇 and special conformal transformation (SCT) 𝐾𝜇 needs to be

emergent in the IR at the conformal point but broken along the RG flow. It is worthwhile to

construct these IR generators by the UV operators on fuzzy sphere. These works invest in such

construction with the help of stress tensor 𝑇 𝜇𝜈 . The time component 𝑇 𝜏𝜏 of stress tensor equals

the Hamiltonian density ℋ and it integrates into the generator Λ𝜇 = 𝑃 𝜇 + 𝐾𝜇 = ∫ dn̂𝑛𝜇ℋ.

– 9 –

The action of this generator sends a scaling operator to other operators in the same multiplet

with the number of partial derivatives increased or decreased by one. These works calculate

the matrix elements of the generators Λ𝜇 and find good agreement with the theoretical values

in the CFT, which is another non-trivial verification of conformal symmetry. Furthermore, the

separate generators 𝑃 𝜇 and 𝐾𝜇 can be obtained by considering the commutatator [𝐻, Λ𝜇], which

is useful in determining the primaries. The detail for constructing the conformal generators is

given in Section 4.7.

3.2 Realising various 3d CFTs

The second direction is to study various other CFTs beyond 3d Ising. Fuzzy sphere has

revealed many new information about these theories ; the previously known results are also

consistent with the fuzzy sphere. So far, the accessible CFTs include SO(5) deconfined criti-

cality [4], O(3) Wilson-Fisher [8] and a series of new theories with Sp(𝑁) symmetry [16].

The SO(5) deconfined criticality [4] The first theory besides Ising CFT to which fuzzy

sphere is applied is the SO(5) deconfined quantum critical point (DQCP). Deconfined quan-

tum critical point (DQCP) is one of the pioneering example of phase transitions beyond Landau

paradigm [59–61]. It has led to numerous theoretical surprises including the emergent SO(5)
symmetry [62] and the duality between interacting theories [63]. Despite extensive studies

over the past two decades, its nature remains controversial. Numerical simulations have shown

no signal of discontinuity, but abnormal scaling behaviors have been observed [61]. A plausible

proposal to reconcile the tension is that DQCP is pseudocritical, i.e., a weakly first-order phase

transition that has approximate critical behaviour, and is controlled by a pair of complex fixed

points very close to the pseudocritical region [63, 64].

The DQCP can be conveniently studied on the fuzzy sphere by constructing a non-linear

sigmamodel (NL𝜎M) on target space 𝑆4 with a level-1 topologicalWess-Zumino-Witten (WZW)

term, which serves as a dual description of the DQCP with an exact SO(5) symmetry [62, 63].

The idea is to construct a four-flavour model with global symmetry Sp(2)/ℤ2 = SO(5) (ℤ2

means to gauge the pseudoreal representations). At half-filling, it can be described by a NL𝜎M
on the Grassmannian Sp(2)

Sp(1)×Sp(1) ≅ 𝑆4 and the WZW level can be matched [65, 66]. This

– 10 –

work provides evidence that the DQCP exhibits approximate conformal symmetry. This work

has identified 19 conformal primaries and their 82 descendants. Furthermore, by examining

the renormalisation group flow of the lowest symmetry singlet, this work demonstrates that

the DQCP is more likely pseudo-critical, with the approximate conformal symmetry plausibly

emerging from nearby complex fixed points. Several works [67, 68] appear later to follow up.

The O(3) Wilson-Fisher [8] The O(𝑁) Wilson-Fisher theories are probably one of the most

studied theories for 3d criticalities with wide range of applications [22, 23, 69]. Specifically,

this work focus on the O(3) WF CFT. The construction involves two copies of SU(2) ferro-

magnet with altogether 4 flavours. Briefly speaking, the model contains two competing terms :

(1) a SU(2) ferromagnetic interaction which favours a Heisenberg ferromagnetic phase where

each of the two copies being half-filled and the symmetry-breaking order parameter lives on a

𝑆2 manifold, (2) a transverse field which favours one of the two copies being completely filled,

corresponding to a Heisenberg paramagnet. The transition between these two phases falls into

the O(3) Wilson-Fisher universality. Through the energy spectrum at the transition, this work

provides evidence that O(3) Wilson-Fisher fixed point exhibits conformal symmetry, as well as

revealing a wealth of information about the CFT can be revealed, such as the instability to cubic

anisotropy. This work also calculates several OPE coefficients.

A series of new Sp(𝑁)-symmetric CFTs [16] The quest to discover new 3d CFTs has been

intriguing for physicists. A virgin land on this quest is the parity-breaking CFTs. In 3d, the

Chern-Simons-matter theories stand out as the most well known and possibly the only known

type of parity-breaking CFTs. Fuzzy sphere is a promising platform to study these theories.

This work makes a concrete construction by generalising the DQCP to the WZW-NL𝜎M on

the target space of a general symplectic Grassmannian

Sp(𝑁)
Sp(𝑀) × Sp(𝑁 − 𝑀). (3.2)

Several candidate Chern-Simons-matter theories are known to exist on its phase diagram which

have 𝑁 flavour of gapless bosons or fermions coupled to a non-Abelian (viz. Sp(1), Sp(2), etc.)
Chern-Simons gauge field [70]. On the fuzzy sphere, this WZW-NL𝜎M can be realised by a

2𝑁 layer model with Sp(𝑁) global symmetry, and 2𝑀 out of the 2𝑁 layers are filled. This

– 11 –

work numerically verifies the emergent conformal symmetry by observing the integer-spaced

conformal multiplets and studying the finite-size scaling of the conformality.

3.3 Studying conformal defects and boundaries

Apart from the bulk CFTs, fuzzy sphere can also be used to study their conformal defects

and boundaries. Deforming a CFT with interactions living on a sub-dimensional defect may

trigger a RG flow towards a non-trivial interacting IR fixed point. A defect IR theory that owns

a smaller conformal symmetry is called a defect CFT [71, 72]. The dCFTs own rich physical

structure such as defect operators and bulk-to-defect correlation functions. Moreover, a bulk

CFT can flow to several different dCFTs. Similarly, deformation on the boundary may trigger

a flow towards a boundary CFT (bCFT). So far, the accessible defects/boundaries include the

magnetic line defect of 3d Ising CFT, including its defect operator spectrum, correlators [6],

𝑔-function, defect changing operators [12], its cusp [11], and the conformal boundaries of 3d

Ising CFT [12, 13].

Conformal magnetic line defect [6] This is the first work that studies conformal defects with

fuzzy sphere. The simplest example of conformal defect is the magnetic line defect of the 3d

Ising CFT [73–76], where the defect line is completely polarised and the ℤ2 symmetry is ex-

plicitly broken. Taking a defect line along 𝑧-direction that passes the origin point, after the

radial quantisation, this corresponds to the north and south poles of the sphere being polarised.

Hence, to realise the magnetic line defect on fuzzy sphere, one only needs to apply a pinning

magnetic field to the north and south poles (Since only the 𝑚 = +𝑠 orbital has non-zero am-

plitude at the north pole and 𝑚 = −𝑠 at the south pole due to the locality, one only need to pin

the 𝑚 = ±𝑠 orbitals).

This work demonstrates that the defect IR fixed point has emergent conformal symmetry

SO(2, 1) × O(2) : in the operator spectrum, there exists a displacement operator as the non-

conservation of stress tensor at exactly ΔD = 2, and the defect primaries and descendants have

integer spacing ; the bulk-to-defect one-point (1-pt) and two-point (2-pt) correlation functions

follow a power law. This work has identified 6 low-lying defect primary operators and extract

– 12 –

their scaling dimensions, as well as computing one-point bulk correlators and two-point bulk-

defect correlators.

The 𝑔-function and defect changing operators [9] This work studies the 𝑔-function of con-

formal defects and the defect creation and changing operators. Similar to the central charge

and the 𝐹 -function in bulk CFTs, there exists a RG-monotonic quantity called the 𝑔-function
for the line defects that is non-increasing along the flow [77, 78]. It is defined as the ratio be-

tween the partition functions of the defect CFT and the bulk CFT. On the other hand, consider

two semi-infinite magnetic line defects that are pinned towards opposite directions joint at one

point, a defect changing operator lives at the joining point [79, 80]. Similarly, a defect creation

operator lives at the endpoint of a semi-infinite line defect. The relevance of the defect changing

operator is related to the stability of spontaneous symmetry-breaking (SSB) on the line defect.

This work realises the defect creation and changing operators for the Ising mangetic line

defect by acting a pinning field at the north pole, and opposite pinning fields at the north and

south poles, respectively. The scaling dimensions are calculated through state operator corre-

spondence Δcreation = 0.108(5), Δchanging = 0.84(5), indicating the instability of SSB on the

Ising mangetic line. Moreover, this work shows that the 𝑔-function, along with many other

CFT data, can be calculated by taking the overlaps between the eigenstates of different defect

configurations. Most importantly, this paper has given the first non-perturbative result for the

𝑔-function 𝑔 = 0.602(2).

Cusp [11] A cusp is two semi-infinite defect lines joined at one point at an angle. This can be

realised on fuzzy sphere through pinning fields at two points at an angle. This work studies the

cusps through various theoretical and numerical approaches. In particular, on fuzzy sphere, this

paper calculates the cusp anomalous dimension as a function of the angle for the Ising magnetic

line defects, and verifies its relation with the Zamolodchikov norm of the displacement operator.

Conformal boundaries of 3d Ising CFT [12, 13] Apart from line defects, boundaries are also

important extended objects in CFT. For the Ising CFT, there exists several conformal bound-

aries : normal boundary CFT (bCFT) with explicitly broken ℤ2 symmetry, ordinary bCFT that

is stable and has preserved ℤ2 symmetry, extraordinary bCFT with spontaneously broken ℤ2

– 13 –

symmetry, and special bCFT as the transition between ordinary and extraordinary bCFTs [81–

83]. These works focus on the normal and ordinary bCFTs and show that they can be realised

by acting a polarising field on a hemisphere. By noting that the LLL orbitals are localised along

latitude circles, the bCFTs can equivalently be realised by pinning the orbitals with 𝑚 < 0. By
studying the operator spectrum, these works show numerical evidence for conformal symmetry

and estimates the scaling dimensions of the conformal primaries. These works also calculates

the bulk-to-boundary 1-pt and 2-pt functions and extract the corresponding OPE coefficients.

Interestings, these works notice certain correspondence between the boundary energy spectrum

and bulk entanglement spectrum through orbital cut.

3.4 Other works on the fuzzy sphere

Besides the three directions of works, several other works push the boundary of our knowl-

edge of and techniques for the fuzzy sphere.

Conformal perturbation [5] The energy spectrum calculated numerically at finite size does

not coincide with that of the CFT. Part of the finite-size correction comes from the higher

irrelavant operators that are not exactly tuned to zero (e.g., in the Ising CFT, the irrelavent

operators include 𝜖′, 𝐶𝜇𝜈𝜌𝜎, 𝑇 ′
𝜇𝜈 , etc., and the lowest singlets 𝜖 and 𝜖′ are tuned away through

the two parameters). These irrelevant operators exert perturbations on the states and their

energy. This paper captures this kind of correction by the conformal perturbation theory. By

making use of the fact that the corrections from an irrelevant operator on the energy of the

primary and its descendants are not independent, the coefficients of the irrelevant operators can

be fitted.

Although this work is not exactly carried out study on the fuzzy sphere, it opens up a new

route of improving the precision of scaling dimensions on fuzzy sphere by making better use of

the existing data, and the method to partly remove the finite-size correction through conformal

perturbation theory is widely used by following works.

Quantum Monte Carlo on fuzzy sphere [7] Up to the time of this work, the numerical meth-

ods that has been applied to fuzzy sphere include exact diagonalisation (ED) and density ma-

trix renormalisation group (DMRG). This work further presents the numerical studies of fuzzy

– 14 –

sphere with quantumMonte Carlo (QMC) simulation, which is known for its potential for study-

ing criticalities in (2+1) dimensions at larger system size. Specifically, this work makes use of

the determinant quantumMonte Carlo (DQMC) method that converts the simulation of fermions

into the simulation of bosonic auxiliary fields. To overcome the sign problem, this work con-

siders two copies of the original model and constructs the Ising CFT on a 4-flavour model.

This work determines the lowest energy spectra within each symmetry sector by calculating

the time-displaced correlation functions. This work also calculates the equal-time correlation

functions and compares them with the two-point functions of CFT.

Ising CFT from FQHE state [17] Up to the time of this work, all the constructions of CFTs

on fuzzy sphere are based on the quantum Hall ferromagnet. Specifically, before the interaction

is added, an integer number of the lowest Landau levels are fully occupied. This state has a

finite charge gap that guarentees that the gapless spin degree of freedom do not strongly couple

with the charge degree of freedom when one adds the interactions.

This work further explores the possibility to construct CFTs on other states with charge

gap— in particular, the Haldane-Laughlin states that capture the fractional quantumHall effect

(FQHE) [44, 84]. Specifically, this work studies the fermionic LLL at fillings of 𝜈 = 1/3 and

1/5. The model Hamiltonian contains (1) a dominant projection term that put the ground state

on the Haldane-Laughlin state, and (2) an interaction term as a perturbation that drives the

Ising-type phase transition. This work shows that the energy spectra at the critical point exhibit

conformal symmetry. More noticeably, this work also makes the construction with respect to

the bosonic LLL at a filling of 𝜈 = 1/2.

4 Model construction

In this section, we review the process to construct a model on fuzzy sphere and extract

conformal data. We aim at providing the necessary technical information for those who want

to get started with the research on fuzzy sphere, especially the aspects that are rarely covered

by other literature.

– 15 –

4.1 Projection onto the lowest Landau level

To build the setup of fuzzy sphere, we consider a sphere with radius 𝑅 and put a 4𝜋𝑠-
monopole at its centre. Consider free electrons moving on the sphere. The monopole modifies

the single particle Hamiltonian [44, 44, 46, 47].

𝐻0 = 1
2𝑀𝑅2 (𝜕𝜇 + 𝑖𝐴𝜇)2 (4.1)

where 𝜇 = 𝜃, 𝜙 and the gauge connection is taken as

𝐴𝜃 = 0, 𝐴𝜙 = − 𝑠
𝑅 ctg 𝜃 (4.2)

The eigenstates of the Hamiltonian are the monopole spherical harmonics

𝑌 (𝑠)
𝑙𝑚 (n̂), 𝑙 = 𝑠, 𝑠 + 1, … , 𝑚 = −𝑙, … , 𝑙 − 1, 𝑙 (4.3)

where n̂ is the unit vector of the point on the sphere specified by angular coordinates 𝜃 and 𝜙,
and the energies are

𝐸𝑙 = 1
2𝑀𝑅2 (𝑙(𝑙 + 1) − 𝑠2) (4.4)

Each level, known as a Landau level, has a degeneracy (2𝑙+1). Specifically, the wavefunctions
on the lowest Landau level (LLL) 𝑙 = 𝑠 is easy to write out :

𝑌 (𝑠)
𝑠𝑚 (n̂) = 𝐶𝑚𝑒𝑖𝑚𝜙 cos𝑠+𝑚 𝜃

2 sin𝑠−𝑚 𝜃
2, 𝐶𝑚 = 1

√4𝜋Β(𝑠 + 𝑚 + 1, 𝑠 − 𝑚 + 1) (4.5)

where 𝐶𝑚 is the normalising factor, and Β is the Euler’s beta function. The LLL has a degen-

eracy 𝑁𝑚 = 2𝑠 + 1.
We now consider 𝑁𝑓 flavours of fermions moving on the sphere, characterised by the

second-quantised fermion operator ̂𝜓𝑓 (n̂), with a flavour index 𝑓 = 1, … , 𝑁𝑓 . We partially

fill the lowest Landau level and set the single energy gap to be much larger than the scale of

interaction 𝐻0 ≫ 𝐻int, so that the quantum fluctuation can be constrained on the lowest Landau

level. In practice, we often fill integer number of flavours 𝑁𝑒 = 𝑘𝑁𝑚 (𝑘 ∈ ℤ) so that a quantum

Hall ferromagnet (i.e., the state where integer number of LLLs are filled) is preferred in the

absence of interaction, for which the charge degree of freedom is gapped and does not couple

strongly to the CFT degree of freedom in the presence of the interaction.

– 16 –

We then project the system onto the LLL. Technically, this can be done by write the fermion

operators in terms of the annihilation operators of the LLL orbitals

̂𝜓𝑓 (n̂) =
𝑠

∑
𝑚=−𝑠

𝑌 (𝑠)
𝑠𝑚 (n̂) ̂𝑐𝑚𝑓 (4.6)

where ̂𝑐(†)
𝑚𝑓 annihilates/creates an electron with 𝐿𝑧-quantum number 𝑚 at the 𝑓-th flavour of the

lowest Landau level. Hereafter, we will omit the hats on the operators.

After the projection, we obtain a finite Hilbert space on which numerical simulation can

be carried out. For the purpose of numerical simulation, the system is analoguous to a length-

(2𝑠 + 1) spin chain with long range interaction, where different Landau level orbitals behave

like the lattice sites. The difference is that the (2𝑠 + 1) orbital forms a spin-𝑠 representation of

the SO(3) rotation group, and in this way the continuous rotation symmetry is preserved. The

exact rotation symmetry shortens the RG flow from the UV to the IR and reduces the finite-size

effect, so that the numerical results are considerably accurate even at small system size.

The word ‘fuzzy’ means non-commutativity [43]. Here the magnetic field results in a

the non-commutativity of the coordinates. More concretely, we project write the coordinate

operators as a matrix on the lowest Landau level

𝑋𝜇
𝑚1𝑚2 = ∫ d2n̂𝑛𝜇�̄� (𝑠)

𝑠𝑚1(n̂)𝑌 (𝑠)
𝑠𝑚2(n̂) (4.7)

These matrices X𝜇 (𝜇 = 𝑥, 𝑦, 𝑧) satisfy relation [4, 47]

X𝜇X𝜇 = 𝑠
𝑠 + 1𝕀, [X𝜇,X𝜈] = 1

𝑠 + 1𝑖𝜖𝜇𝜈𝜌X𝜌 (4.8)

The first equation involves the radius 𝑅 of the sphere, and the second equation involves the

magnetic length 𝑙𝐵 that determines the non-commutativity. An arbitrary scale factor can change

these lengths but their ratio is fixed and scales as

𝑅/𝑙𝐵 ∼ √𝑠 ∼ √𝑁𝑚 (4.9)

We can take 𝑙𝐵 = 1 as the unit length. In this way, the radius scales with the square root of

number of orbitals. The thermodynamic limit can be taken by 𝑁𝑚 → ∞, where a regular sphere

is recovered.

– 17 –

4.2 Density operator

Having constructed the single particle states, we then consider the interacting many-body

Hamiltonian. The simplest building block is the density operator, i.e., local fermion bilinear.

𝑛𝑀 (n̂) = 𝜓†
𝑓′(n̂)𝑀𝑓′𝑓𝜓𝑓 (n̂) (4.10)

Here the matrix insertion 𝑀 put the density operators in a certain representation of the flavour

symmetry. For example, for a 2-flavour system, 𝑀 can be taken as the Pauli matrices 𝕀, 𝜎𝑥, 𝜎𝑦, 𝜎𝑧 ;

for a system with 𝑁𝑓 flavours in the fundamental representation of SU(𝑁𝑓) flavour symmetry,

one can put 𝑛𝑀 in the singlet or adjoint representation

𝑛𝑆(n̂) = 𝜓†
𝑐 (n̂)𝜓𝑐(n̂)

𝑛𝑎
𝑏(n̂) = 𝜓†

𝑎(n̂)𝜓𝑏(n̂) − 1
𝑁 𝛿𝑎

𝑏𝜓†
𝑐 (n̂)𝜓𝑐(n̂) (4.11)

Like the fermion operator, the density operator can also be expressed in the orbital space.

𝑛𝑀 (n̂) = ∑
𝑙𝑚

𝑌𝑙𝑚(n̂)𝑛𝑀,𝑙𝑚 (4.12)

Conversely,

𝑛𝑀,𝑙𝑚 = ∫ d2n̂ �̄�𝑙𝑚𝑛𝑀 (n̂)

= ∫ d2n̂ �̄�𝑙𝑚 (∑
𝑚1

�̄� (𝑠)
𝑠𝑚1𝑐†

𝑚1𝑓1
) 𝑀𝑓1𝑓2 (∑

𝑚2

𝑌 (𝑠)
𝑠𝑚2𝑐𝑚1𝑓2)

= ∑
𝑚1𝑚2

𝑐†
𝑚1𝑓1

𝑀𝑓1𝑓2𝑐𝑚1𝑓2 ∫ d2n̂ �̄�𝑙𝑚�̄� (𝑠)
𝑠𝑚1𝑌 (𝑠)

𝑠𝑚2

= ∑
𝑚1

𝑐†
𝑚1𝑓1

𝑀𝑓1𝑓2𝑐𝑚+𝑚1,𝑓2×

(−1)𝑠+𝑚+𝑚1(2𝑠 + 1)√2𝑙 + 1
4𝜋 (

𝑠 𝑙 𝑠
𝑚1 𝑚 −𝑚1 − 𝑚

) (
𝑠 𝑙 𝑠

𝑚1 𝑚 −𝑚1 − 𝑚
)

(4.13)

Here we have used the properties of the monopole spherical harmonics [85, 86]

�̄� 𝑠
𝑙𝑚 = (−1)𝑠+𝑚𝑌 (−𝑠)

𝑙,−𝑚 (4.14a)

– 18 –

∫ d2n̂𝑌 (𝑠)
𝑙𝑚 �̄� (𝑠)

𝑙𝑚 = 𝛿𝑙𝑙′𝛿𝑚𝑚′ (4.14b)

∫ d2n̂𝑌 (𝑠1)
𝑙1𝑚1

𝑌 (𝑠2)
𝑙2𝑚2

𝑌 (𝑠3)
𝑙3𝑚3

= √(2𝑙1 + 1)(2𝑙2 + 1)(2𝑙3 + 1)
4𝜋 (

𝑙1 𝑙2 𝑙3
𝑚1 𝑚2 𝑚3

) (
𝑙1 𝑙2 𝑙3

−𝑠1 −𝑠2 −𝑠3
)

(4.14c)

and (
𝑙1 𝑙2 𝑙3
𝑚1 𝑚2 𝑚3

) is the 3𝑗-symbol [87]. In this way, we have fully expressed the density

operator in terms of the operators in the orbital space 𝑐(†)
𝑚𝑓 .

4.3 Density-density interaction

The most straightforward way to construct an interaction term is to add a density-density

interaction with a potential function. We note that this is not the simplest construction and we

will present the simpler construction in terms of pseudopotentials in the next section.

𝐻int = ∫ d2n̂1 d2n̂2 𝑈(|n̂1 − n̂2|)𝑛𝑀 (n̂1)𝑛𝑀 (n̂2) (4.15)

The interacting potentials can be expanded in terms of the Legendre polynomials

𝑈(|r12|) = ∑
𝑙

�̃�𝑙𝑃𝑙(cos 𝜃12) = ∑
𝑙𝑚

4𝜋
2𝑙 + 1�̄�𝑙𝑚(n̂1)𝑌𝑙𝑚(n̂2) (4.16)

where r12 = n̂1 − n̂2 and |r12| = 2 sin 𝜃12/2. Conversely

�̃�𝑙 = ∫ sin 𝜃12d𝜃12
2𝑙 + 1

2 𝑈(|r12|)𝑃𝑙(cos 𝜃12) (4.17)

Specifically, for local and super-local interactions

𝑈(|r12|) = 𝛿(r12) �̃�𝑙 = 2𝑙 + 1

𝑈(|r12|) = ∇2𝛿(r12) �̃�𝑙 = −𝑙(𝑙 + 1)(2𝑙 + 1) (4.18)

By expanding the density operators into the orbital space and completing the integrals,

𝐻int = ∑
𝑙𝑚

4𝜋�̃�𝑙
2𝑙 + 1𝑛†

𝑀,𝑙𝑚𝑛𝑀,𝑙𝑚 (4.19)

With these ingrediants, we can now consider how to construct models. This comes down to

matching the symmetry and phase diagram. E.g., for the Ising model [1], the ℤ2 global symme-

try is realised as the exchange of the two flavours 𝜓↑(r) ↔ 𝜓↓(r). We need a phase diagram with

– 19 –

a paramagnetic (PM) phase where the ℤ2 symmetry is conserved and a ferromagnetic phase

where the ℤ2 symmetry is spontaneously broken. The PM phase is favoured by a polarising

term that resembles a transverse field

−ℎ ∫ d2n̂𝑛𝑥(n̂)

and the FM phase where either of the two flavours is fully filled is favoured by a repulsion

between the two flavours

∫ d2n̂1 d2n̂2 𝑈(|n̂1 − n̂2|)𝑛↑(n̂1)𝑛↓(n̂2)

where the density operators are defined as

𝑛𝑥(n̂) = 𝜓†
↓ (n̂)𝜓↑(n̂) + 𝜓†

↑ (n̂)𝜓↓(n̂), 𝑛↑ = 𝜓†
↑ (n̂)𝜓↑(n̂), 𝑛↓ = 𝜓†

↓ (n̂)𝜓↓(n̂)

and the potentials can be most conveniently taken as a combination of local and super-local

interactions. Altogether the model Hamiltonian reads

𝐻int = ∫ d2n̂1 d2n̂2 𝑈(|n̂1 − n̂2|)𝑛↑(n̂1)𝑛↓(n̂2) − ℎ ∫ d2n̂𝑛𝑥(n̂) (4.20)

By tuning the ratio between ℎ and 𝑈(r12), a phase transition described by the Ising CFT is

realised.

4.4 Interaction in terms of pseudopotentials

Another way that is much more convenient to construct the four-fermion interaction terms

is through Haldane pseudopotential [44, 88]. To explain the idea, we take the 3d Ising model

as an example. We first classify all the fermion bilinears 𝜆𝑚𝑚′𝑓𝑓′𝑐𝑚𝑓𝑐𝑚′𝑓′ . To simplify the dis-

cussion, we can take a specific isospin index 𝜆𝑚𝑚′𝑐𝑚↑𝑐𝑚′↓. The fermion bilinears can be classified

into irreducible representations of SO(3) rotation symmetry. Since 𝑐𝑚𝑓 carries the spin-𝑠 repre-
sentation, the spin of its bilinear ranges from 0 to 2𝑠 and takes integer values. The spin-(2𝑠−𝑙)
combination reads

Δ𝑙𝑚 = ∑
𝑚1

⟨𝑠𝑚1, 𝑠(𝑚 − 𝑚1)|(2𝑠 − 𝑙)𝑚⟩𝑐𝑚1,↑𝑐𝑚−𝑚1,↓ (4.21)

– 20 –

where 𝑚 = −(2𝑠 − 𝑙), … , (2𝑠 − 𝑙), and the Clebshbar-Gordan coefficients [87] is related to the

3𝑗-symbol by

⟨𝑙1𝑚1, 𝑙2𝑚2|𝑙𝑚⟩ = (−1)−𝑙1+𝑙2−𝑚√2𝑙 + 1 (
𝑙1 𝑙2 𝑙
𝑚1 𝑚2 −𝑚

) (4.22)

A four-fermion interaction term is formed by contracting these paring operators with its con-

jugate.

𝐻 = ∑
𝑙

𝑈𝑙𝐻𝑙, 𝐻𝑙 = ∑
𝑚

Δ†
𝑙𝑚Δ𝑙𝑚 (4.23)

Putting these altogether, the interaction Hamiltonian can be expressed as

𝐻 = ∑
𝑙,𝑚1𝑚2𝑚3𝑚4

𝑈𝑙𝐶 𝑙
𝑚1𝑚2𝑚3𝑚4𝑐†

𝑚1↑𝑐†
𝑚2↓𝑐𝑚3↓𝑐𝑚4↑ − ℎ ∑

𝑚
(𝑐†

𝑚↑𝑐𝑚↓ + h.c.) (4.24)

where the matrix elements are

𝐶 𝑙
𝑚1𝑚2𝑚3𝑚4 = 𝛿𝑚1+𝑚2,𝑚3+𝑚4⟨𝑠𝑚1, 𝑠𝑚2|(2𝑠−𝑙)(𝑚1+𝑚2)⟩⟨𝑠𝑚3, 𝑠𝑚4|(2𝑠−𝑙)(𝑚3+𝑚4)⟩ (4.25)

The coupling strength 𝑈𝑙 of the spin-(2𝑠 − 𝑙) channel is called the Haldane pseudopotentials.

We need also to consider the constraint that the two fermions must be anti-symmetrised :

for even 𝑙, the orbital index is symmetrised, so the spin index must be antisymmetrised, so the

two fermions form a spin-singlet which is invariant under the SU(2) transformation ; for odd

𝑙, the orbital index is anti-symmetrised, so the spin index is symmetrised, breaking the flavour

symmetry from SU(2) to ℤ2. Hence, an odd-𝑙 pseudopotential must be added (This fact escapes

the construction by density-density interaction).

The fermion bilinears with other isospin configurations 𝜆𝑚𝑚′,±(𝑐𝑚↑𝑐𝑚′↑ ± 𝑐𝑚↓𝑐𝑚′↓) can be

analysed in a similar way. After that, we have enumerated all possible four-fermion interaction

terms.

Each pseudopotential can correspond to a profile of interaction potential functions. The

conversion between the pseudopotentials 𝑈𝑙 and the Legendre expansion coefficients of the po-

tential function �̃�𝑙

𝑈(|r12|) = ∑
𝑙

�̃�𝑙𝑃𝑙(cos 𝜃12) (4.26)

is

𝑈𝑙 = ∑
𝑘

�̃�𝑘(−1)𝑙(2𝑠 + 1)2 {
2𝑠 − 𝑙 𝑠 𝑠

𝑘 𝑠 𝑠
} (

𝑠 𝑘 𝑠
−𝑠 0 𝑠

)
2

(4.27)

– 21 –

where {… } is the 6𝑗-symbol. Specifically, a local interaction contains only pseudopotential𝑈0 ; a

superlocal interaction of form (∇2)𝑙𝛿(r12) contains 𝑈0, 𝑈1, … , 𝑈𝑙. Here we give the expressions

for the lowest pseudopotentials explicitly.

𝑈(|r12|) = 𝛿(r12) 𝑈0 = (2𝑠 + 1)2

4𝑠 + 1
𝑈(|r12|) = ∇2𝛿(r12) 𝑈0 = −𝑠(2𝑠 + 1)2

4𝑠 + 1 𝑈1 = 𝑠(2𝑠 + 1)2

4𝑠 − 1 . (4.28)

More details are given in Ref. [15].

For systems with more complicated continuous symmetries, classification in terms of rep-

resentation of flavour symmetry must also be considered, and the indices must be overall anti-

symmetrised. We explain that through the example of a 2𝑁-flavour system with Sp(𝑁) global
symmetry [16]. The maximal flavour symmetry is SU(2𝑁), so interactions must be added to

break the symmetry from SU(2𝑁) to Sp(𝑁). The fermion operators live in the Sp(𝑁) funda-
mental representation. We shall show that all the allowed terms are

𝐻 = ∑
𝑙∈ℤ𝑚1𝑚2𝑚3𝑚4

𝑈𝑙𝐶 𝑙
𝑚1𝑚2𝑚3𝑚4𝑐†

𝑚1𝑎𝑐†
𝑚2𝑏𝑐𝑚3𝑏𝑐𝑚4𝑎

− 1
2 ∑

𝑙∈2ℤ𝑚1𝑚2𝑚3𝑚4

𝑉𝑙𝐶 𝑙
𝑚1𝑚2𝑚3𝑚4Ω𝑎𝑎′Ω𝑏𝑏′𝑐†

𝑚1𝑎𝑐†
𝑚2𝑎′𝑐𝑚3𝑏′𝑐𝑚4𝑏 (4.29)

where Ω = (
0 𝕀𝑁

−𝕀𝑁 0
).

To find out all the four-fermion interactions allowed by the rotation symmetry SO(3) and
flavour symmetry Sp(𝑁), we classify all the fermion bilinears 𝑐𝑚1𝑎𝑐𝑚2𝑏 into irreducible rep-

resentations (irrep) of SO(3) × Sp(𝑁). For each irrep, by contracting the bilinear with its

Hermitian conjugate, we obtain an allowed four-fermion interaction term. Each fermion carries

SO(3) spin-𝑠 and Sp(𝑁) fundamental. For the rotation symmetry SO(3), the bilinear can carry

spin-(2𝑠 − 𝑙)(𝑙 = 0, … , 2𝑠) represetation ; for even 𝑙, the orbital indices are symmetrised ; for

odd 𝑙, the orbital indices are antisymmetrised. For the flavour symmetry Sp(𝑁), the bilinear

can carry singlet 𝑆, traceless antisymmetric rank-2 tensor 𝐴 and symmetric rank-2 tensor 𝑇
representation ; for 𝑆 and 𝐴, the flavour indices are antisymmetrised ; for 𝑇 , the flavour in-

– 22 –

dices are symmetrised. As the two fermions altogether should be antisymmetrised, the allowed

combinations are

1. Sp(𝑁) singlet and SO(3) spin-(2𝑠 − 𝑙) with even 𝑙, the bilinears are

Δ𝑙𝑚 = ∑
𝑚1𝑚2

⟨𝑠𝑚1, 𝑠𝑚2|(2𝑠 − 𝑙)𝑚⟩Ω𝑎𝑎′𝑐𝑚1𝑎𝑐𝑚2𝑎′𝛿𝑚,𝑚1+𝑚2 (4.30)

The corresponding interaction term 𝐻𝑆,𝑙 = ∑𝑚 Δ†
𝑙𝑚Δ𝑙𝑚 is the even-𝑙 pseudopotential for the

𝑉 -term.

2. Sp(𝑁) antisymmetric and SO(3) spin-(2𝑠 − 𝑙) with even 𝑙, the bilinears are

Δ𝑙𝑚,[𝑎𝑏] = ∑
𝑚1𝑚2

⟨𝑠𝑚1, 𝑠𝑚2|(2𝑠 − 𝑙)𝑚⟩ (𝑐𝑚1𝑎𝑐𝑚2𝑏 − 𝑐𝑚1𝑏𝑐𝑚2𝑎 − 1
𝑁 Ω𝑎𝑏Ω𝑐𝑐′𝑐𝑚1𝑐′𝑐𝑚2𝑐) 𝛿𝑚,𝑚1+𝑚2 .

(4.31)

The corresponding interaction term 𝐻𝐴,𝑙 = ∑𝑚 Δ†
𝑙𝑚,[𝑎𝑏]Δ𝑙𝑚,[𝑎𝑏] is the even-𝑙 pseudopotential for

the 𝑈-term.

3. Sp(𝑁) symmetric and SO(3) spin-(2𝑠 − 𝑙) with odd 𝑙, the bilinears are

Δ𝑙𝑚,(𝑎𝑏) = ∑
𝑚1𝑚2

⟨𝑠𝑚1, 𝑠𝑚2|(2𝑠 − 𝑙)𝑚⟩ (𝑐𝑚1𝑎𝑐𝑚2𝑏 + 𝑐𝑚1𝑏𝑐𝑚2𝑎) 𝛿𝑚,𝑚1+𝑚2 . (4.32)

The corresponding interaction term 𝐻𝑇 ,𝑙 = ∑𝑚 Δ†
𝑙𝑚,(𝑎𝑏)Δ𝑙𝑚,(𝑎𝑏) is the odd-𝑙 pseudopotential for

the 𝑈-term.

In summary, all allowed interactions are the 𝑈𝑙 terms with both even and odd 𝑙, and the 𝑉𝑙

terms with only even 𝑙.

4.5 Operator spectrum and search for conformal point

Having introduced the construction of an interacting model on fuzzy sphere, we now turn

to the verification of the conformal symmetry and the extraction of the CFT data. The most

straightforward approach is to extract the scaling dimensions from the energy spectrum through

the state-operator correspondence. Specifically, there is a one-to-one correspondence between

the eigenstates of the Hamiltonian and the CFT operators. The state and its corresponding

operator has the same SO(3) spin and representation under flavour symmetry, and the excitation

energy of a state |Φ⟩ is proportional to the scaling dimension of the corresponding operator ΔΦ

𝐸Φ − 𝐸0 = 𝑣
𝑅ΔΦ (4.33)

– 23 –

where 𝐸0 is the ground state energy, 𝑅 is the radius of the sphere (here we take 𝑅 = √𝑁𝑚),

and 𝑣 is the model-dependent speed of light. The constant 𝑣/𝑅 can be determined through a

calibration process, i.e., comparing the spectrum to some known properties of a CFT spectrum.

The criteria to determine the conformal symmetry include

1. The existence of a conserved stress tensor 𝑇 𝜇𝜈 . The stress tensor is the symmetry cur-

rent of the translation transformation. It is known to be a singlet under the flavour symmetry,

have spin-2 under SO(3) rotation and scaling dimension exactly Δ𝑇 𝜇𝜈 = 3.
2. The existence of a conserved flavour symmetry current 𝐽𝜇 if there is a continuous

flavour symmetry. The symmetry current typically lives in the antisymmetric rank-2 tensor

representation of the flavour symmetry. E.g., if the flavour symmetry is U(1), then the symme-

try current has charge-0 ; if the flavour symmetry is O(3), then the symmetry current has spin-1

and is odd under the improper ℤ2 transformation ; if the flavour symmetry is O(𝑛) (𝑛 ≥ 4) or
SU(𝑛) (𝑛 ≥ 3), then the symmetry current lives in the antisymmetric rank-2 tensor represen-

tation.

3. The organisation of the operator spectrum into conformal multiplets. All the levels in

the spectrum of a CFT can be organised into the conformal primaries and their descendants.

The descendants live in the same representation under the flavour symmetry as the primary,

and the difference between the scaling dimensions of a primary and its descendant is an integer.

Specifically, for a scalar primary Φ, its descendants have the form1

□𝑛𝜕𝜇1𝜕𝜇2 … 𝜕𝜇𝑙Φ − (trace), 𝑛, 𝑙 = 0, 1, 2, …

with SO(3) spin-𝑙 and scaling dimension Φ + 2𝑛 + 𝑙, where □ = 𝜕𝜇𝜕𝜈 . For a spinning primary

Φ𝜇1…𝜇𝑠 , its descendants has the two forms :

□𝑛𝜕𝜈1 … 𝜕𝜈𝑚𝜕𝜌1 … 𝜕𝜌𝑘Φ𝜌1…𝜌𝑘𝜇1…𝜇𝑠−𝑘 , 𝑘 = 0, … , 𝑠, 𝑛, 𝑚 = 0, 1, …

with scaling dimension ΔΦ + 𝑘 + 𝑚 + 2𝑛 and SO(3) spin-(𝑠 − 𝑘 + 𝑚), and

□𝑛𝜕𝜈1 … 𝜕𝜈𝑚𝜕𝜌1 … 𝜕𝜌𝑘𝜖𝜎
̃𝜇 ̃𝜈𝜕 ̃𝜈Φ𝜌1…𝜌𝑘 ̃𝜇𝜇1…𝜇𝑠−𝑘−1 , 𝑘 = 0, … , 𝑠 − 1, 𝑛, 𝑚 = 0, 1, …

with scaling dimension ΔΦ + 𝑘 + 𝑚 + 2𝑛 + 1 and SO(3) spin-(𝑠 − 𝑘 + 𝑚). For the second

form, the fully antisymmetric tensor 𝜖 alters the parity.

1Hereafter, we will presume the substraction of trace and omit the terms.

– 24 –

The most convenient way of determining the coefficient 𝑣/𝑅 is by utilising criteria 1 or 2 :

𝑣
𝑅 = 𝐸𝑇 𝜇𝜈 − 𝐸0

3 or
𝐸𝐽𝜇 − 𝐸0

2 (4.34)

Alternatively, one can define a cost function that depends on the tuning parameter and the speed

of light and compares the scaling dimensions obtained from fuzzy sphere and the prediction by

conformal symmetry. E.g., for the Ising CFT, the tuning parameters are the pseudopotentials

{𝑈𝑖} and the transverse field ℎ. The criteria for conformal symmetry we use include the stress

tensor 𝑇 𝜇𝜈 and the descendants 𝜕𝜇𝜎, 𝜕𝜇𝜕𝜈𝜎,□𝜎, 𝜕𝜇𝜖. The cost function is the root-mean-square

of the deviations of these criteria from the expectation of the conformal symmetry

𝑄({𝑈𝑖}, ℎ, 𝑣; 𝑁𝑚) = 1
𝑁𝑠

[(Δ(FS)
𝑇 𝜇𝜈 − 3)2 + (Δ(FS)

𝜕𝜇𝜎 − Δ(FS)
𝜎 − 1)2

+(Δ(FS)
𝜕𝜇𝜕𝜈𝜎 − Δ(FS)

𝜎 − 1)2 + (Δ(FS)
□𝜎 − Δ(FS)

𝜎 − 1)2 + (Δ(FS)
𝜕𝜇𝜖 − Δ(FS)

𝜖 − 1)2] (4.35)

where 𝑁𝑠 = 5 is the number of criteria, the scaling dimensions of an operator Φ on the fuzzy

sphere is determined as

Δ(FS)
Φ ({𝑈𝑖}, ℎ, 𝑣; 𝑁𝑚) = 𝐸Φ − 𝐸0

𝑣/𝑅 . (4.36)

The optimal conformal point and calibrator are determined by minimising this cost function for

each system size 𝑁𝑚. Note that this optimal point depends on the system size. In order to do

finite size scaling, if the CFT describes a phase transition, one could fix all but one parameters at

the optimal point in the largest accessible system size and tune the last parameter to determine

the critical point through a finite size scaling.

4.6 Local observables

We have introduced how to determine the scaling dimensions from the energy spectrum.

Beyond that, evaluating other CFT quantities requires realising local CFT operators on the

fuzzy sphere. Any gapless local observables 𝒪(n̂) on the fuzzy sphere can be written as the

linear combination of CFT operators that lives in the same representation of flavour symmetry

and parity2 [2].

𝒪(n̂, 𝜏) = ∑
𝛼

𝜆𝛼Φ(cyc.)
𝛼 (n̂, 𝜏) (4.37)

2The realisation of CFT operators in the microscopic model has been investigated in more detail in 2d in Ref. [89].

– 25 –

Here special care should be taken for the CFT operator Φ(cyc.)
𝛼 (n̂, 𝜏) on the cylinder. A con-

formal transformation produces a scale factor Λ(r)ΔΦ to a primary operator Φ. For the Weyl

transformation from the flat spacetime to the cylinder, the scale factor is Λ(r) = 𝑟/𝑅. Hence3,

Φ(cyc.)
𝛼 (n̂, 𝜏) = (𝑒𝜏/𝑅

𝑅)
ΔΦ𝛼

Φ(flat)
𝛼 (r) (4.38)

For descendants, certain other factors may be produced, but the conversion factors still scale

with the radius of the sphere as 𝑅−Δ where Δ is the scaling dimension of the descendants. For

simplicity, hereafter we focus on the equal-time correlators with 𝜏 = 0, for which Φ(cyc.)
𝛼 (n̂) =

𝑅−ΔΦ𝛼 Φ(flat)
𝛼 (r). The operator with larger system size decays faster when increasing system

size.

The simplest local observable is the density operator defined in Eq. (4.10), and its decom-

position into angular modes is given in Eqs. (4.12) and (4.13). From the CFT perspective,

the density operators are the superpositions of scaling operators with corresponding quantum

numbers, i.e., with the same representation under flavour symmetry and parity.

Take the Ising model as an example. Consider the density operators 𝑛𝑥 and 𝑛𝑧 with ma-

trix insertion 𝑀 = 𝜎𝑥, 𝜎𝑧. In the leading order, they can be used as UV realisations of CFT

operators 𝜎 and 𝜖.

𝑛𝑥(n̂) = 𝜆0 + 𝜆𝜖𝜖(n̂) + 𝜆𝜕𝜇𝜖𝜕𝜇𝜖(n̂) + 𝜆𝑇 𝜇𝜈 𝑇 𝜇𝜈(n̂) + … 𝜖FS = 𝑛𝑥 − 𝜆0
𝜆𝜖

+ …

𝑛𝑧(n̂) = 𝜆𝜎𝜎(n̂) + 𝜆𝜕𝜇𝜎𝜕𝜇𝜖(n̂) + 𝜆𝜕𝜇𝜕𝜈𝜎𝜕𝜇𝜕𝜈𝜎(n̂) + … 𝜎FS = 𝑛𝑧

𝜆𝜎
+ … (4.39)

where the coefficients 𝜆0, 𝜆𝜖, 𝜆𝜎, … are model-dependent and need to be determined, and all the

operators on the right hand side are defined on the cylinder.

We first consider the insertion of a single operator ⟨Φ1|Φ2(n̂)|Φ3⟩. It helps us produce the
OPE coefficients. For the simplest example of three scalars,

𝑓Φ1Φ2Φ3 = lim
𝑟∞→∞

𝑟−2ΔΦ1∞ ⟨Φ1(𝑥∞)Φ2(𝑥)Φ3(0)⟩flat = ⟨Φ1|Φ(flat)
2 (𝑥)|Φ3⟩ (4.40)

3We need to clarify some of the notations : 𝒪 represents an operator in the microscopic model, and Φ represents

a CFT operator ; the arguments Φ(n̂) or Φ(n̂, 𝜏) by default mean the operator is defined on a cylinder, and Φ(r) by
default on flat spacetime.

– 26 –

where 𝑥∞ is a point on the sphere with radius 𝑟∞, 𝑥 is a point on the unit sphere, the states are

obtained from acting the operator at the origin point on the vacuum state

|Φ3⟩ = Φ3(0)|0⟩ (4.41)

and its Hermitian conjugate is defined as

Φ†
1(∞) = (Φ1(0))† = lim

𝑟∞→∞
𝑟2ΔΦ1∞ Φ1(𝑥∞), ⟨Φ1| = ⟨0|Φ†

1(∞) (4.42)

After the Weyl transformation from the flat spacetime to the cylinder, we obtain the expression

on fuzzy sphere

𝑓Φ1Φ2Φ3 = 𝑅ΔΦ2 ⟨Φ1|Φ(cyl.)
2 (n̂)|Φ3⟩. (4.43)

The UV realisation of Φ2 contains many other operators with different spins. By integrating

the correlation function against different spherical harmonics, i.e., take the angular modes of

the operator inserted

∫ dn̂ �̄�𝑙𝑚(n̂)⟨Φ1|Φ2(n̂)|Φ3⟩ = ⟨Φ1|Φ2,𝑙𝑚|Φ3⟩, (4.44)

we can filter out the subleading contributions with different spin. For the spinning operators,

this also tells us about different OPE structures. By taking Φ3 = 𝕀, we can recover the two

point functions

⟨Φ2|Φ2,00|0⟩ = 𝑅−Φ2

Φ2(n̂)|0⟩ = 𝑅−Φ2 [|Φ2⟩ + 𝜆′
𝜇(n̂)|𝜕𝜇Φ2⟩ + 𝜆″(n̂)|□Φ2⟩ + 𝜆″

𝜇𝜈(n̂)|𝜕𝜇𝜕𝜈Φ2⟩] (4.45)

It is worthnoting acting a primary Φ2(n̂) on the vacuum also produces various descendants in

the multiplet.

In the example of Ising CFT, we first use the insertion of a single operator to determine

the coefficients 𝜆0, 𝜆𝜖, 𝜆𝜎.

𝜆0 = 1
√4𝜋

⟨0|𝑛𝑥
00|0⟩, 𝜆𝜖 = 𝑅Δ𝜖

√4𝜋
⟨𝜖|𝑛𝑥

00|0⟩, 𝜆𝜎 = 𝑅Δ𝜎

√4𝜋
⟨𝜎|𝑛𝑧

00|0⟩ (4.46)

Take the OPE coefficient 𝑓𝜎𝜎𝜖 as an example. It can be expressed either as a one point function

of 𝜎 or 𝜖

𝑓𝜎𝜎𝜖 = 𝑅Δ𝜎⟨𝜖|𝜎(n̂)|𝜎⟩ = ⟨𝜖|𝑛𝑧
00|𝜎⟩

⟨0|𝑛𝑧
00|𝜎⟩ + 𝒪(𝑅−2)

– 27 –

= 𝑅Δ𝜖⟨𝜎|𝜖(n̂)|𝜎⟩ = ⟨𝜎|𝑛𝑥
00|𝜎⟩ − ⟨0|𝑛𝑥

00|0⟩
⟨𝜖|𝑛𝑥

00|0⟩ + 𝒪(𝑅−(3−Δ𝜖)) (4.47)

For the first line, the subleading contribution comes from the contribution of the descendant □𝜎
to 𝑛𝑧

00. As 𝜎(n̂) scales as 𝑅−Δ𝜎 and □𝜎(n̂) as 𝑅−Δ𝜎−2,

⟨𝜖|𝑛𝑧
00|𝜎⟩ = 𝑓𝜎𝜎𝜖𝜆𝜎𝑅−Δ𝜎(1 + 𝑐1𝑅−2 + …)

⟨𝜖|𝑛𝑧
00|𝜎⟩ = 𝜆𝜎𝑅−Δ𝜎(1 + 𝑐′

1𝑅−2 + …)
⟨𝜖|𝑛𝑧

00|𝜎⟩
⟨0|𝑛𝑧

00|𝜎⟩ = 𝑓𝜎𝜎𝜖 + 𝒪(𝑅−2) (4.48)

Here 𝑐1 and 𝑐′
1 are constant factors that represents the contribution of □𝜎 and does not scale

with system size. Hence, the subleading contribution scales as 𝑅−2. For the second line, the

subleading contribution comes from the stress tensor 𝑇 𝜇𝜈 . Similarly, the power of the scaling

is the difference of the scaling dimension 𝑅−(Δ𝑇 𝜇𝜈 −Δ𝜖) = 𝑅−(3−Δ𝜖).

We then proceed to the insertion of two operators. This can help us determine up to a four-

point function [3]. Through conformal transformation, any four point function can be expressed

in the form of

⟨Φ1|Φ(cyl.)
2 (n̂, 𝜏)Φ(cyl.)

3 (̂z)|Φ4⟩ = 𝑒ΔΦ2 𝜏/𝑅

𝑅ΔΦ2 +ΔΦ3
⟨Φ†

1(∞)Φ2(r)Φ3(̂z)Φ4(0)⟩ (4.49)

where the time-displaced operator can be defined as

Φ2(n̂, 𝜏) = 𝑒−𝐻𝜏Φ2(n̂)𝑒𝐻𝜏 (4.50)

As a sanity check, By taking Φ1 = Φ4 = 𝕀, Φ2 = Φ3 and 𝜏 = 0, the two-point function on

the unit sphere is recovered

⟨0|Φ(cyl.)
2 (n̂)Φ(cyl.)

2 (̂z)|0⟩ = 𝑅−2ΔΦ2 ⟨Φ2(n̂)Φ2(̂z)⟩

= 1
𝑅2ΔΦ2 |n̂ − ̂z|2ΔΦ2

= 1
𝑅2ΔΦ2 (1 − cos 𝜃)ΔΦ2

. (4.51)

4.7 Conformal generators

So far, in the conformal group, we know that the rotation and the dilatation is manifest on

the fuzzy sphere. The rest, viz. translation and SCT, are emergent. In this section, we con-

sider how to express the generators of these emergent symmetries in terms of the microscopic

operators [14, 15].

– 28 –

A general Noether current and corresponding generator of the infinitesimal spacetime

transformation 𝑥𝜇 ↦ 𝑥𝜇 + 𝜖𝜇(𝑥) can be expressed in terms of the stress tensor

𝑗𝜇
𝜖 (𝑥) = 𝜖𝜈(𝑥)𝑇 𝜇

𝜈(𝑥), 𝑄𝜖 = ∫
Σ
d𝑑−1𝑥 √𝑔𝑗0

𝜖 (𝑥) (4.52)

where for the second equation, the integral is evaluated on a closed surface Σ. Specifically, for
the generators 𝑃 𝜇, 𝐾𝜇 of translation and SCT in the embedded sphere

𝑃 𝜇 = ∫ d2n̂ (𝑛𝜇𝑇 0
0 + 𝑖𝑇 0𝜇), 𝐾𝜇 = ∫ d2n̂ (𝑛𝜇𝑇 0

0 − 𝑖𝑇 0𝜇) (4.53)

Hence, the conformal generator Λ𝜇 = 𝑃 𝜇 + 𝐾𝜇 is the 𝑙 = 1 component of the Hamiltonian

density ℋ = 𝑇 0
0
4

Λ𝑚 = 𝑃𝑚 + 𝐾𝑚 = √4𝜋
3 ∫ d2n̂ �̄�1𝑚(n̂)ℋ(n̂). (4.54)

By acting it on the the states, the number of derivatives is increased or decreased by 1, e.g., for
a primary Φ

Λ𝜇|Φ⟩ = const. × |𝜕𝜇Φ⟩

Λ𝜇|𝜕𝜇Φ⟩ = const. × |Φ⟩ + const. × |𝜕𝜇𝜕𝜈Φ⟩ + const. × |□Φ⟩ (4.55)

The derivation of the expression and the constant factors are calculated and given in Ref. [].

We then need to find the expression for the Hamiltonian density. For example, for Ising

model, it is the local density operator and density-density interactions with some full derivatives

ℋ(n̂) = 𝑛𝑧 (𝑔0 + 𝑔1∇2) 𝑛𝑧 − ℎ𝑛𝑥 + 𝑔𝐷,1∇2𝑛𝑥 + 𝑔𝐷,2∇2𝑛2
𝑧 + … (4.56)

where 𝑔𝐷,𝑖 are undetermined constants that does not affect the Hamiltonian 𝐻 = ∫ d2n̂ℋ. We

have only listed a few examples of the allowed full derivatives.

To determine those constants, we consider another strategy by consider all the possible two-

fermion and four-fermion operators that are singlet under flavour symmetry and spin-1 under

SO(3). We consider the example of Ising CFT. The two-fermion terms include the density

operactors

𝑛𝑥
1𝑚 and 𝑛0

1𝑚.
4Here the indices 𝜇 and 𝑚 are two equivalent way to express the components

– 29 –

Similar to what we have done for Hamiltonian, the four-fermion operators can be obtained by

combining the fermion bilinears Δ𝑙𝑚

∑
𝑙1𝑙2𝑚1𝑚2

�̃�𝑙1𝑙2Δ†
𝑙1𝑚1

Δ𝑙2𝑚2⟨(2𝑠 − 𝑙1)(−𝑚1), (2𝑠 − 𝑙2)𝑚2|1𝑚⟩ (4.57)

For 𝑙1 ∈ 2ℤ, the spin index in the pairing operator is anti-symmetrised ; For 𝑙1 ∈ 2ℤ + 1, the
spin index in the pairing operator is symmetrised. Therefore, 𝑙1 − 𝑙2 ∈ 2ℤ for non-zero results.

And since |𝑙1 − 𝑙2| ≤ 1, we conclude 𝑙1 = 𝑙2. so

Λ𝑚 = ∑
𝑙𝑚1𝑚2

�̃�𝑙Δ†
𝑙𝑚1

Δ𝑙𝑚2 (
2𝑠 − 𝑙 2𝑠 − 𝑙 1
−𝑚1 𝑚2 𝑚

) + ℎ̃𝑛𝑥
1𝑚 + ̃𝜇𝑛0

1𝑚 (4.58)

Here, �̃�𝑙, ℎ̃, ̃𝜇 are tuning parameters.

After obtaining Λ𝜇 = 𝑃 𝜇 + 𝐾𝜇, the separate 𝑃 𝜇 and 𝐾𝜇 can be obtained by considering

the commutator with the dilatation generator 𝐷, which is proportional to the Hamiltonian. As

[𝐷, 𝑃 𝜇] = 𝑃 𝜇 and [𝐷, 𝐾𝜇] = −𝐾𝜇.

𝑃 𝜇 = 1
2Λ𝜇 + 1

2[𝐷, Λ𝜇]

𝐾𝜇 = 1
2Λ𝜇 − 1

2[𝐷, Λ𝜇]. (4.59)

5 Numerical methods

In this section, we briefly review the numerical methods supported in FuzzifiED. The nu-

merical methods that have been applied to fuzzy sphere include exact diagonalisation (ED), den-

sity matrix renormalisation group (DMRG) and determinant quantum Monte Carlo (DQMC).

Among these ED and DMRG have been implemented in FuzzifiED.

5.1 Exact diagonalisation (ED)

Exact diagonalisation (ED) might be the most straightforward method to solve a quan-

tum many-body Hamiltonian. In ED, one construct a many-body basis and write down all the

elements of the Hamiltonian matrix on these basis. The eigenstates of the Hamiltonian with

the lowest energy can be solved without finding the full eigensystem by Arnoldi or Lanczos

algorithm.

– 30 –

Briefly speaking, the Arnoldi algorithm [90] is an iterative method. In each iteration, it

constructs an orthonormal basis of the Krylov subspace from an initial vector and finds an

approximation to the eigenvector in that basis. This approximate eigenvector is then used as

the initial vector for the next iteration. An example of Krylov subspace is spanned by acting

the matrix 𝐻 repeatedly on the initial vector |𝑖 ⟩

𝒦𝑟(𝐻, |𝑖⟩) = span {|𝑖⟩, 𝐻|𝑖⟩, 𝐻2|𝑖 ⟩, … , 𝐻𝑛−1|𝑖 ⟩} (5.1)

The ED calculation can be optimised in several ways. The storage of the Hamiltonian

matrix may be compressed by data structure taylored for sparse matrix such as compressed

sârse column (CSC). The Hamiltonian matrix is usually block diagonal due to symmetry of the

Hamiltonian. The Hilbert space is divided into several sectors that carry different representa-

tion under the symmetry, and acting the Hamiltonian on a state in a sector results in a state in

the same sector. E.g., in the ED calculation for the Ising model on the fuzzy sphere, the sym-

metries we can use include two U(1) symmetries, viz. the conservation of particle number and

the angular momentum in the 𝑧-direction, and three ℤ2 symmetries, viz. the Ising ℤ2 flavour

symmetry, the particle-hole symmetry and the 𝜋-rotation along the 𝑦-axis5.
The ED method enjoy several advantages, including (1) the full knowledge of the eigen-

state wavefunction and (2) the ability to access relatively high excited states. However, despite

these optimisations, the dimension of the Hilbert space scales exponentially with the number of

orbitals. This results in exponentially growing space and time complexity. E.g., for the Ising

model on the fuzzy sphere, for 𝑁𝑚 = 12, the dimension of Hilbert space dimℋ = 1.6 × 104

and the number of elements in the Hamiltonian is 𝑁el = 6.5 × 105 ; for 𝑁𝑚 = 14, the number

have already grown to dimℋ = 1.8×105 and 𝑁el = 1.1×107, which translates to a memory

demand of 0.2 gigabytes.

In FuzzifiED, we use the Fortran library Arpack [91] to perform the Arnoldi algorithm.

5So far, FuzzifiED only supports U(1) and ℤ𝑝 symmetries. We are still trying to implement non-abelian symme-

tries.

– 31 –

5.2 Density matrix renormalisation group (DMRG)

To overcome the size limit of ED, density matrix renormalisation group (DMRG) is a pow-

erful method calculating the ground state of a quasi-one-dimensional system. It has been first

first invented by White [92] as an improvement to the numerical renormalisation group (NRG)

used in the Kondo problem. Since its proposal, it has been proven powerful in various prob-

lems in condensed matter physics, such as the static and dynamic properties of one-dimensional

models such as the Heisenberg, 𝑡–𝐽 and Hubbard models [93]. Later, Schollwöck has discov-

ered a new point of view that implements the DMRG in the language of matrix product states

(MPS) [94].

Briefly speaking, in this language, DMRG is a variational method that optimises the fidelity

between the exact ground state and the variational MPS. To find the lowest excited state, one

need to add projection |0⟩⟨0| of the ground state |0⟩ to the Hamiltonian by hand.

Although the fuzzy sphere deals with (2 + 1)-dimensional quantum systems, the basis of

lowest Landau level provides a natural way to express it as a quasi-1d problem. Therefore,

DMRG has been a powerful numerical method for fuzzy sphere. However, like other (2 + 1)d
models, the DMRG on fuzzy sphere also suffers from the divergence of the required maximal

bond dimension with system size. One should thus be careful with checking the convergence of

the results when doing DMRG.

In FuzzifiED, we use the ITensor Package [18] in Julia to perform the DMRG calculations.

– 32 –

Part II

Numerical calculation with FuzzifiED

6 Installation and usage

The package FuzzifiED is implemented in the Julia language6. Some useful links are given

in Table 1. To install the package, run the following command in the Julia REPL (read-eval-

print loop).

using Pkg ; Pkg.add("FuzzifiED")

To use the package, include at the start of the Julia script

using FuzzifiED

To obtain the documentation for an interface, type ‘?’ followed by the keyword in the Julia

REPL, e.g., ‘?Confs’.

Installation for Julia https://julialang.org/downloads

Homepage https://www.fuzzified.world

Documentation https://docs.fuzzified.world

Julia source code https://github.com/FuzzifiED/FuzzifiED.jl

JLL wrapper https://github.com/FuzzifiED/FuzzifiED_jll.jl

Fortran source code https://github.com/FuzzifiED/FuzzifiED_Fortran

Registry of the package https://juliahub.com/ui/Packages/General/FuzzifiED

Table 1. Some useful links.

7 Exact diagonalisation

In this section, we briefly describe the procedure for exact diagonalisation (ED) calculation

and give an instruction for using FuzzifiED for ED.

6The most intensive core functionalities are written in Fortran and wrapped by Julia interfaces, but the users

are not required to have any interaction or knowledge with the Fortran part of the source code.

– 33 –

https://julialang.org/downloads
https://www.fuzzified.world
https://docs.fuzzified.world
https://github.com/FuzzifiED/FuzzifiED.jl
https://github.com/FuzzifiED/FuzzifiED_jll.jl
https://github.com/FuzzifiED/FuzzifiED_Fortran
https://juliahub.com/ui/Packages/General/FuzzifiED

Practically, the ED calculation can be divided into 4 steps, which will be described in detail

in the following sections.

1. Construct a many-body basis that respect a given set of quantum numbers (Sections 7.2

and 7.3). Specifically, in FuzzifiEDwe support quantum numbers of commutingU(1) or discrete
ℤ𝑝 symmetries.

2. Construct the sparse matrix corresponding to the Hamiltonian in the basis above (Sec-

tions 7.4 and 7.5).

3. Find the lowest eigenstates and their corresponding eigenenergies of the sparse ma-

trix (Section 7.6).

4. Making measurements on the eigenstates (Sections 7.7, 7.8 and 7.9). This including

the total angular momentum, density operators, entanglement, etc.

To demonstrate the usage of FuzzifiED interfaces, in this section, we use an example that

calculates the eigenstates for the Ising model on fuzzy sphere. Specifically, it

1. calculates the lowest eigenstates in the symmetry sector 𝐿𝑧 = 0 and (𝒫, 𝒵, ℛ) =
(+, +, +),

2. measures their total angular momenta, and

3. calcultes the OPE coefficient 𝑓𝜎𝜎𝜖 = ⟨𝜎|𝑛𝑧
00|𝜖⟩/⟨𝜎|𝑛𝑧

00|0⟩.
The full code is collected in Appendices B.1 and B.2.

7.1 Setup

Before starting the calculation, we need to input the setup for the system, including the

number of flavours 𝑁𝑓 , orbitals 𝑁𝑚 and sites 𝑁𝑜

• A ‘flavour’ is labelled by 𝑓 . The number of flavours is 𝑁𝑓 .

• An ‘orbital’ is specified by the magnetic quantum number labelled by 𝑚. The number

of orbitals is 𝑁𝑚 = 2𝑠 + 1.
• A ‘site’ is specific by both the flavour and the orbital index 𝑜 = (𝑓, 𝑚). The number of

sites is 𝑁𝑜 = 𝑁𝑚𝑁𝑓 . In practice, we label the sites with an integer from 1 to 𝑁𝑜. We store the

sites in an ascending order of first 𝑚 and then 𝑓 : 𝑜 = (𝑚 + 𝑠)𝑁𝑓 + 𝑓 .
In the example of Ising model with 𝑠 = 5.5,

nm = 12

– 34 –

nf = 2

no = nm * nf

FuzzifiED also provides three environment parameters that defines how it works.

• FuzzifiED.ElementType—set the default type of the operator elements, either ComplexF64

or Float64.

• FuzzifiED.NumThreads — an integer to define how many threads OpenMP uses.

• FuzzifiED.SilentStd — a flag to determine whether logs of the FuzzifiED functions

should be turned off.

7.2 Constructing the configurations

The first step for the ED calculation is to construct the basis tha respects the symmetries

of the Hamiltonian. This is divided into two steps : (1) generate the ‘configurations’ that carry

the diagonal quantum numbers, and (2) generate the ‘basis’ that also carry the off-diagonal

quantum numbers (under discrete transformations). The ‘configurations’ are the collection of

states that can be written as direct product of occupied |1⟩ or empty |0⟩ on each site and carries

certain diagonal quantum numbers (QNDiag).

The QNDiags supported by FuzzifiED are the charges of U(1) or ℤ𝑝 symmetry in the form

of

𝑄 = ∑
𝑜

𝑞𝑜𝑛𝑜 U(1) symmetry

𝑄 = ∑
𝑜

𝑞𝑜𝑛𝑜 mod 𝑝 ℤ𝑝 symmetry (7.1)

where 𝑛𝑜 = 𝑐†
𝑜 𝑐𝑜 is the particle number on each site, and 𝑞𝑜 is the charge that each orbital

carries. FuzzifiED restricts 𝑞𝑜 to be integer-valued. In FuzzifiED, the QNDiags are recorded

in the mutable type QNDiag.

QNDiag — Type

The type contains the fields

• name :: String — the name of the diagonal quantum number7.

• charge :: Vector{Int64} — the symmetry charge 𝑞𝑜 of each site.

7The name is only needed for conversion into quantum numbers in ITensor.

– 35 –

https://docs.fuzzified.world/core/#FuzzifiED.ElementType
https://docs.fuzzified.world/core/#FuzzifiED.NumThreads
https://docs.fuzzified.world/core/#FuzzifiED.SilentStd
https://docs.fuzzified.world/core/#FuzzifiED.QNDiag

• modul :: Vector{Int64} — the modulus 𝑝, set to 1 for U(1) QNDiags.

and can be initialised by the method

QNDiag([name :: String,]charge :: Vector{Int64}[, modul :: Int64])

where the arguments in the brackets are facultative.

Several useful QNDiags are built-in8

• GetNeQNDiag(no :: Int64) — the numberof electrons ;

• GetLz2QNDiag(nm :: Int64, nf :: Int64) — twice the angular momentum 2𝐿𝑧 ;

• GetFlavQNDiag(nm :: Int64, nf :: Int64, qf :: Union{Dict{Int64, Int64},

Vector{Int64}}[, id :: Int64 = 1, modul :: Int64 = 1])9 —a linear combination of num-

ber of electrons in each flavour 𝑄 = ∑𝑓 𝑞𝑓𝑛𝑓 , where {𝑞𝑓} is stored in qf in the format of either

an array or a dictionary.

• GetZnfChargeQNDiag(nm :: Int64, nf :: Int64)— a ℤ𝑁𝑓 -charge 𝑄 = ∑𝑁𝑓 −1
𝑓=0 𝑓𝑛𝑓

mod 𝑁𝑓 .

• GetPinOrbQNDiag(no :: Int64, pin_o :: Vector{Int64}[, id :: Int64 = 1])—

the number of electrons in the subset of sites pin_o. This QNDiag is useful for defects and

boundaries.

The collection of configurations is generated from the QNDiags. It is recorded in the mu-

table type Confs.

Confs — Type

The mutable type contains the fields

• no :: Int64 — the number of sites.

• ncf :: Int64 — the number of configurations.

• conf :: Vector{Int64} is an array of length ncf containing all the configurations.

• nor :: Int64, lid :: Vector{Int64} and rid :: Vector{Int64} contain the infor-

mation of Lin table that is used to inversely look up the index from the configuration.

and can be constructed by the method

8For a more detailed description of the interfaces, refer to the documentation at https://docs.fuzzified.world.
9In Julia, Union{A,B} means that both the types 𝐴 and 𝐵 are acceptable. E.g., for 𝑄 = 𝑛𝑓=1 − 𝑛𝑓=3 in a

4-flavour system, both qf = [1, 0, -1, 0] or qf = Dict(1 => 1, 3 => -3) are acceptable.

– 36 –

https://docs.fuzzified.world/models/#FuzzifiED.GetNeQNDiag-Tuple{Int64}
https://docs.fuzzified.world/models/#FuzzifiED.GetLz2QNDiag-Tuple{Int64,%20Int64}
https://docs.fuzzified.world/models/#FuzzifiED.GetFlavQNDiag
https://docs.fuzzified.world/models/#FuzzifiED.GetFlavQNDiag
https://docs.fuzzified.world/models/#FuzzifiED.GetZnfChargeQNDiag-Tuple{Int64,%20Int64}
https://docs.fuzzified.world/models/#FuzzifiED.GetPinOrbQNDiag
https://docs.fuzzified.world/core/#FuzzifiED.Confs
https://docs.fuzzified.world

Confs(no :: Int64, secd :: Vector{Int64}, qnd :: Vector{QNDiag})

where qnd is the array of QNDiags, and secd is the array of charges 𝑄 of each QNDiag10.

Here each configuration is stored as a binary number with 𝑁𝑜 bits. If the 𝑜-th site in the

configuration is occupied, the (𝑜 − 1)-th bit of the configuration is 1; if the site is empty, then

the bit is 0. Besides the storation of the configuration, we also need a reverse look-up process

that returns the index from the binary string. This is realised by a Lin table stored in lid and

rid. The details are given in Appendix A.1.

In the example of Ising model Eq. (4.20), there are two QNDiags, viz. the particle number

and the angular momentum.

𝑄1 = 𝑁𝑒, 𝑞1,𝑚𝑓 = 1

𝑄2 = 2𝐿𝑧, 𝑞2,𝑚𝑓 = 2𝑚 (7.2)

The full code to generating the configurations in the 𝐿𝑧 = 0 sector is

qnd = [

QNDiag(fill(1, no)),

QNDiag([2 * m - nm - 1 for m = 1 : nm for f = 1 : nf])

]

cfs = Confs(no, [nm, 0], qnd)

Alternatively, using the built-in models,

qnd = [

GetNeQNDiag(no),

GetLz2QNDiag(nm, nf)

]

cfs = Confs(no, [nm, 0], qnd)

10In general, manymethods in FuzzifiED admits keyword arguments num_th :: Int64 that specifies the number

of threads and disp_std :: Bool that specifies whether or not the log shall be displayed. Hereafter, we will omit

these two arguments.

– 37 –

7.3 Constructing the basis

Having constructed the configurations, we now construct the basis of the Hilbert space.

The ‘basis’ is the collection of states that are linear combinations of the configuration carrying

certain diagonal and ℤ𝑝 off-diagonal quantum numbers (QNOffd).

The QNOffds supported by FuzzifiED are the ℤ𝑝 symmetry that are in the form of

𝒵 ∶ 𝑐𝑜 → 𝛼∗
𝑜 𝑐(𝑝𝑜)

𝜋𝑜 , 𝑐†
𝑜 → 𝛼𝑜𝑐(1−𝑝𝑜)

𝜋𝑜 (7.3)

where we use a notation 𝑐(1) = 𝑐† and 𝑐(0) = 𝑐 for convenience, 𝜋𝑜 is a permutation of the

sites 1, … 𝑁𝑜, 𝛼𝑜 is a coefficient, and 𝑝𝑜 specified whether or not particle-hole transformation is

performed for the site. Note that one must guarentee that all these transformations commute

with each other and also commute with the diagonal quantum numbers. In FuzzifiED, the

QNOffds are recorded in the mutable type QNOffd.

QNOffd — Type

The mutable type contains the fields

• perm :: Vector{Int64} — a length-𝑁𝑜 array that records the permutation 𝜋𝑜.

• ph :: Vector{Int64} — a length-𝑁𝑜 array that records 𝑝𝑜 to determine whether or

not to perform a particle-hole transformation.

• fac :: Vector{ComplexF64} — a length-𝑁𝑜 array that records the factor 𝛼𝑜 in the

transformation.

• cyc :: Int64 — the cycle 𝑝.
It can be initialised by the methods

QNOffd(perm :: Vector{Int64}[, ph :: Vector{Int64}][, fac :: Vector{

ComplexF64}][, cyc :: Int64])

QNOffd(perm :: Vector{Int64}, ph_q :: Bool[, fac :: Vector{ComplexF64}])

By default ph is set all 0, fac is set to all 1 and cyc is set to 2. If ph_q is set to be true, ph is

set to all 1.

Several useful QNOffds are built-in

– 38 –

https://docs.fuzzified.world/core/#FuzzifiED.QNOffd

• GetParityQNOffd(nm :: Int64, nf :: Int64[, permf, fac]) — the particle-hole

transformation 𝒫 ∶ 𝑐†
𝑚𝑓 ↦ 𝛼𝑓𝑐𝑚𝜋𝑓 , with the permutation of flavours 𝜋𝑓 and the factors 𝛼𝑓 stored

in permf and fac as either an array or a dictionary.

• GetFlavPermQNOffd(nm :: Int64, nf :: Int64, permf, fac][, cyc :: Int64])

— the flavour permutation transformation 𝒵 ∶ 𝑐†
𝑚𝑓 ↦ 𝛼𝑓𝑐†

𝑚𝜋𝑓 , with the permutation of flavours

𝜋𝑓 and the factors 𝛼𝑓 stored in permf and fac as either an array or a dictionary, and the cycle

stored in cyc.

• GetRotyQNOffd(nm :: Int64, nf :: Int64) — the 𝜋-rotation with respect to the

𝑦-axis ℛ ∶ 𝑐†
𝑚𝑓 ↦ (−1)𝑚+𝑠𝑐†

(−𝑚)𝑓

After implementing the QNOffds, a state in the new basis should look like

|𝐼⟩ = 𝜆𝑖𝐼1 |𝑖𝐼1⟩ + 𝜆𝑖𝐼2 |𝑖𝐼2⟩ + ⋯ + 𝜆𝑖𝐼𝑚𝐼
|𝑖𝐼𝑚𝐼 ⟩ (7.4)

where the |𝑖 ⟩’s are configurations, and |𝐼⟩ is a linear combination of them. This process can be

regarded as organising the configurations into groups of size 𝑚𝐼 . In FuzzifiED, the basis {|𝐼⟩}
is recorded in the mutable type Basis.

Basis — Type

The mutable type contains the fields

• cfs :: Confs — the configurations {|𝑖⟩} that respect the QNDiags.

• dim :: Int64 — the dimension of the basis.

• szz :: Int64 — the maximum size max𝑚𝐼 of groups.

• cfgr :: Vector{Int64} — an array of length cfs.ncf and records which group |𝐼⟩
each configuration |𝑖 ⟩ belong to.

• cffac :: Vector{ComplexF64} — an array of length cfs.ncf and records the coeffi-

cients 𝜆𝑖 of each configuration.

• grel :: Matrix{Int64} — a szz×dim matrix that records the configurations in each

group |𝑖𝐼𝑘⟩ (𝑘 = 1, … , 𝑚𝐼).

• grsz :: Vector{Int64} — an array of length dim that records the size 𝑚𝐼 of each

group.

It can be constructed by the methods

– 39 –

https://docs.fuzzified.world/models/#FuzzifiED.GetParityQNOffd
https://docs.fuzzified.world/models/#FuzzifiED.GetFlavPermQNOffd
https://docs.fuzzified.world/models/#FuzzifiED.GetRotyQNOffd-Tuple{Int64,%20Int64}
https://docs.fuzzified.world/core/#FuzzifiED.Basis

Basis(cfs :: Confs, secf :: Vector{ComplexF64}, qnf :: Vector{QNOffd})

Basis(cfs :: Confs)

where secf records the eigenvalue of each transformation, typically in the form 𝑒𝑖2𝜋𝑞/𝑝 where

𝑝 is the cycle and 𝑞 is the ℤ𝑝 charge.

In the example of Ising model Eq. (4.20), There are three ℤ2 symmetries, viz. the particle-

hole transformation 𝒫, the 𝜋-rotation along the 𝑦-axis ℛ𝑦, and the flavour (Ising) symmetry

𝒵

𝒫 ∶ 𝑐†
𝜎𝑚 ↦ 𝜎𝑐−𝜎,𝑚

𝒵 ∶ 𝑐†
𝜎𝑚 ↦ 𝑐†

−𝜎,𝑚

ℛ𝑦 ∶ 𝑐†
𝜎𝑚 ↦ 𝑐†

𝜎,−𝑚 (7.5)

The code to generate the basis in the all-positive sector is

qnf = [

QNOffd([isodd(o) ? o + 1 : o - 1 for o = 1 : no], true, ComplexF64[

isodd(o) ? -1 : 1 for o = 1 : no]),

QNOffd([isodd(o) ? o + 1 : o - 1 for o = 1 : no]),

QNOffd([isodd(o) ? no - o : no + 2 - o for o = 1 : no], ComplexF64(-1)

.^ (collect(0 : nm * nf - 1) .÷ nf))

]

bs = Basis(cfs, [1, 1, 1], qnf)

Alternatively, using the built-in functions

qnf = [

GetParityQNOffd(nm, 2, [2, 1], [-1, 1]),

GetFlavPermQNOffd(nm, 2, [2, 1]),

GetRotyQNOffd(nm, 2)

]

bs = Basis(cfs, [1, 1, 1], qnf)

– 40 –

7.4 Recording the many-body operator terms

Having constructed the basis, we now construct the many-body operators. A general many-

body operator can be written as

𝒪 =
𝑁𝑡
∑
𝑡=1

𝑈𝑡𝑐(𝑝𝑡1)
𝑜𝑡1 𝑐(𝑝𝑡2)

𝑜𝑡2 … 𝑐(𝑝𝑡𝑙𝑡)𝑜𝑡𝑙𝑡
(7.6)

where 𝑐(0) = 𝑐 and 𝑐(1) = 𝑐†. In FuzzifiED, this is recorded as an array of Term, and each Term

records the building block 𝑈𝑐(𝑝1)
𝑜1 𝑐(𝑝2)

𝑜2 … 𝑐(𝑝𝑙)𝑜𝑙 .

Term — Type

The mutable type contains the fields

• coeff :: ComplexF64 — the coefficient 𝑈 .

• cstr :: Vector{Int64} — a length-2𝑙 array {𝑝1, 𝑜1, 𝑝2, 𝑜2, …𝑝𝑙, 𝑜𝑙} recording the op-

erator string.

It can be initialised by the method

Term(coeff :: ComplexF64, cstr :: Vector{Int64})

The addition and multiplication of terms are supported, and the terms can be simplified by the

method

SimplifyTerms(tms :: Vector{Term})

After the simplification, the resulting terms satisfy

1. Each term is normal ordered — the creation operator is in front of the annihilation

operator ; the site index of the creation operators are in ascending order and the annihilation

operators in descending order.

2. Like terms are combined, and terms with zero coefficients are removed.

In FuzzifiED, several useful operator terms are built-in :

• GetDenIntTerms(nm :: Int64, nf :: Int64[, ps_pot :: Vector{<:Number}][,

mat_a :: Matrix{<:Number}[, mat_b :: Matrix{<:Number}]]):: Terms—the normal-ordered

density-density interaction term in the Hamiltonian

∑
𝑙{𝑚𝑖 𝑓𝑖 }

𝑈𝑙𝐶 𝑙
{𝑚𝑖 }𝑀

𝐴
𝑓1𝑓4𝑀𝐵

𝑓2𝑓3𝑐†
𝑚1𝑓1

𝑐†
𝑚2𝑓2

𝑐𝑚3𝑓3𝑐𝑚4𝑓4 (7.7)

– 41 –

https://docs.fuzzified.world/core/#FuzzifiED.Term
https://docs.fuzzified.world/models/#FuzzifiED.GetDenIntTerms
https://docs.fuzzified.world/models/#FuzzifiED.GetDenIntTerms

where 𝐶 𝑙
{𝑚𝑖 } is given in Eq. (4.25).

• GetPairIntTerms(nm :: Int64, nf :: Int64, ps_pot :: Vector{<:Number}, mat_a

:: Matrix{<:Number}[, mat_b :: Matrix{<:Number}])—the normal-ordered pair-pair in-

teraction term in the Hamiltonian

∑
𝑙{𝑚𝑖 𝑓𝑖 }

𝑈𝑙𝐶 𝑙
{𝑚𝑖 }𝑀

𝐴
𝑓1𝑓2𝑀𝐵

𝑓3𝑓4𝑐†
𝑚1𝑓1

𝑐†
𝑚2𝑓2

𝑐𝑚3𝑓3𝑐𝑚4𝑓4 . (7.8)

• GetPolTerms(nm :: Int64, nf :: Int64[, mat :: Matrix{<:Number}])—the po-

larisation term in the Hamiltonian

∑
𝑚𝑓1𝑓2

𝑐†
𝑚𝑓1

𝑀𝑓1𝑓2𝑐𝑚𝑓2 . (7.9)

• GetL2Terms(nm :: Int64, nf :: Int64) — the total angular momentum.

• GetC2Terms(nm :: Int64, nf :: Int64, mat_gen :: Vector{Matrix{<:Number}})

— the quadratic casimir

𝐶2 = ∑
𝑖𝑚𝑚′{𝑓𝑖 }

(𝑐†
𝑚𝑓1

𝐺𝑖
𝑓1𝑓2𝑐𝑚𝑓2)(𝑐†

𝑚′𝑓3
(𝐺𝑖

𝑓3𝑓4)†𝑐𝑚′𝑓4)
tr𝐺†

𝑖 𝐺𝑖
(7.10)

where 𝐺𝑖 are the generator matrices.

In the example of Ising model, the full code that records the Hamiltonian Eq. (4.20) is

using WignerSymbols

ps_pot = [4.75, 1.] * 2.

h = 3.16

tms_hmt = Term[]

m = zeros(Int64, 4)

for m[1] = 0 : nm - 1, m[2] = 0 : nm - 1, m[3] = 0 : nm - 1

m[4] = m[1] + m[2] - m[3]

(m[4] < 0 || m[4] >= nm) && continue

f = [0, 1, 1, 0]

o = m .* nf .+ f .+ 1

mr = m .- s

val = ComplexF64(0)

– 42 –

https://docs.fuzzified.world/models/#FuzzifiED.GetPairIntTerms
https://docs.fuzzified.world/models/#FuzzifiED.GetPairIntTerms
https://docs.fuzzified.world/models/#FuzzifiED.GetPolTerms-Tuple{Int64,%20Int64,%20Matrix{%3C:Number}}
https://docs.fuzzified.world/models/#FuzzifiED.GetL2Terms-Tuple{Int64,%20Int64}
https://docs.fuzzified.world/models/#FuzzifiED.GetC2Terms-Tuple{Int64,%20Int64,%20Vector{%3C:AbstractMatrix{%3C:Number}}}

for l in eachindex(ps_pot)

(abs(mr[1] + mr[2]) > nm - l || abs(mr[3] + mr[4]) > nm - l) && break

val += ps_pot[l] * (2 * nm - 2 * l + 1) * wigner3j(s, s, nm - l, mr

[1], mr[2], -mr[1] - mr[2]) * wigner3j(s, s, nm - l, mr[4], mr[3],

-mr[3] - mr[4])

end

tms_hmt += Terms(val, [1, o[1], 1, o[2], 0, o[3], 0, o[4]])

end

for m = 0 : nm - 1

o = m * nf .+ [1, 2]

tms_hmt += Terms(-h, [1, o[1], 0, o[2]])

tms_hmt += Terms(-h, [1, o[2], 0, o[1]])

end

Alternatively, using the built-in functions

sg1 = [1 0 ; 0 0]

sg2 = [0 0 ; 0 1]

sgx = [0 1 ; 1 0]

sgz = [1 0 ; 0 -1]

ps_pot = [4.75, 1.0] * 2.0

fld_h = 3.16

tms_hmt = SimplifyTerms(

GetDenIntTerms(nm, 2, ps_pot, sg1, sg2)

- fld_h * GetPolTerms(nm, 2, sgx)

)

We also need to construct the total angular momentum. It is defined as

𝐿2 = 𝐿+𝐿− + (𝐿𝑧)2 − 𝐿𝑧, (7.11)

as 𝑐𝑚 carries the SO(3) spin-𝑠 representation,

𝐿𝑧 = ∑
𝑚𝑓

𝑚𝑐†
𝑚𝑐𝑚, 𝐿± = ∑

𝑚𝑓
√(𝑠 ∓ 𝑚)(𝑠 ± 𝑚 + 1)𝑐†

𝑚±1𝑐𝑚 (7.12)

we can first construt its building blocks and use the addition and multiplication of the terms

tms_lz =

[begin m = div(o - 1, nf)

– 43 –

Term(m - s, [1, o, 0, o])

end for o = 1 : no]

tms_lp =

[begin m = div(o - 1, nf)

Term(sqrt(m * (nm - m)), [1, o, 0, o - nf])

end for o = nf + 1 : no]

tms_lm = tms_lp'

tms_l2 = SimplifyTerms(tms_lz * tms_lz - tms_lz + tms_lp * tms_lm)

Alternatively, using the built-in functions,

tms_l2 = GetL2Terms(nm, nf)

7.5 Generating sparse matrix

Having gotten the terms in the many-body operator, we now need to generate the matrix

elements given the initial and final basis and find its eigenstates.

In FuzzifiED, the mutable type Operator records the terms together with information about

its symmetry and the basis of the state it acts on and the basis of the resulting state.

Operator — Type

The type can be initialised with the method

Operator(bsd :: Basis[, bsf :: Basis], terms :: Vector{Term} ; red_q :: Int64

, sym_q :: Int64)

where the arguments

• bsd :: Basis — the basis of the initial state.

• bsf :: Basis — the basis of the final state. Facultative, the same as bsd by default.

• terms :: Vector{Term} — the terms.

• red_q :: Int64 — a flag that records whether or not the conversion to a sparse mar-

trix can be simplified : if bsd and bsf have exactly the same set of quantum numbers, and the

operator fully respects the symmetries, then red_q = 1 ; otherwise red_q = 0 ; Facultative, if

bsf is not given, 1 by default, otherwise 0 by default.

– 44 –

https://docs.fuzzified.world/core/#FuzzifiED.Operator

• sym_q :: Int64 — the symmetry of the operator : if its corresponding matrix is Her-

mitian, then sym_q = 1 ; if it is symmetric, then sym_q = 2 ; otherwise sym_q = 0. Facultative,

if bsf is not given, 1 by default, otherwise 0 by default.

The sparse matrix is recorded in the format of compressed sparse column (CSC), which is

described in detail in Appendix A.2. In FuzzifiED, the sparse matrix is stored in the mutable

type OpMat{T}

OpMat{T} — Type

where T is the type of the elements, it can either be ComplexF64 or Float64. It contines the

fields

• dimd :: Int64, dimf :: Int64, nel :: Int64, symq :: Int64—Parameters of the

sparse matrix, the number of columns, rows, elements and the symmetry of matrix, respectively.

• colptr :: Vector{Int64} with length dimd :: Int64 + 1.

• rowid :: Vector{Int64} with length nel.

• elval :: Vector{T} with length nel.

It can be generated from the method

OpMat[{T}](op :: Operator)

7.6 Finding eigenstates

After generating the sparse matrix, the method GetEigensystem uses the Fortran Arpack

package to calculate its lowest eigenstates.

GetEigensystem — Method

GetEigensystem(mat :: OpMat{T}, nst :: Int64 ; tol :: Float64, ncv :: Int64,

initvec :: Vector{T}) where T <: Union{ComplexF64, Float64} :: Tuple{

Vector{T}, Matrix{T}}

The arguments are

• mat :: OpMat{T} — the matrix.

• nst :: Int64 — the number of eigenstates to be calculated.

– 45 –

https://docs.fuzzified.world/core/#FuzzifiED.OpMat
https://docs.fuzzified.world/core/#FuzzifiED.GetEigensystem-Tuple{OpMat{ComplexF64},%20Int64}

• tol :: Float64 — the tolerence for the Arpack process. The default value is 10−8.

• ncv :: Int64 — an auxiliary parameter needed in the Arpack process. The default

value is max(2 * nst, nst + 10).

• initvec :: Vector{T} — the initial vector. If empty, a random initialisation shall be

used. Facultative, empty by default.

The output include two items

• A length-nst array recording the eigenvalues, and

• A dimd×nst matrix where every column records an eigenstate.

In the example of Ising model, the full code to calculate the lowest 𝑁st = 10 eigenstates

from the basis and the terms is

nst = 10

hmt = Operator(bs, tms_hmt)

hmt_mat = OpMat(hmt)

enrg, st = GetEigensystem(hmt_mat, nst)

7.7 Inner product of states, operators and transformations

Having obtained the eigenstates, we need to make measurements on it. The simplest kind of

measurements is the inner product of a many body operator with two states ⟨𝑗 |𝒪|𝑖⟩. FuzzifiED
supports the inner product and vector product of Operator and OpMat{T} with vectors that

represent the state

(op :: Operator) * (st_d :: Vector{T}) :: Vector{T}

(mat :: OpMat{T}) * (st_d :: Vector{T}) :: Vector{T}

(st_f :: Vector{T}) * (op :: Operator) * (st_d :: Vector{T}) :: T

(st_f :: Vector{T}) * (mat :: OpMat{T}) * (st_d :: Vector{T}) :: T

For example, the code to measure the angular momenta of each state is

tms_l2 = GetL2Terms(nm, 2)

l2 = Operator(bs, tms_l2)

l2_mat = OpMat(l2)

l2_val = [st[:, i]' * l2_mat * st[:, i] for i in eachindex(enrg)]

– 46 –

One might also need to act transformations on the state 𝒵|𝑖⟩. In FuzzifiED, the mutable

type Transf records the transformation together with the basis of the initial and final states

Transf — Type

The type can be initialised from a QNOffd by

Transf(bsd :: Basis[, bsf :: Basis], qnf :: QNOffd)

where the arguments

• bsd :: Basis — the basis of the initial state.

• bsf :: Basis — the basis of the final state. Facultative, the same as bsd by default.

• qnf :: QNOffd — records the transformation 𝑐𝑜 → 𝛼∗
𝑜 𝑐(𝑝𝑜)

𝜋𝑜 .

It can act on a state by

(trs :: Transf) * (st_d :: Vector{T}) :: Vector{T}

7.8 Measuring local observables

Local observables are a kind of particularly useful operators on fuzzy sphere. Their value

at a point on the sphere can be decomposed into spherical components, and the multiplication

of the components follows the triple integral formula of monopole spherical harmonics

𝒪(n̂) = ∑
𝑙𝑚

𝑌 (𝑠)
𝑙𝑚 (n̂)𝒪𝑙𝑚

(𝒪1𝒪2)𝑙𝑚 = ∑
𝑙1𝑙2𝑚1𝑚2

(𝒪1)𝑙1𝑚1(𝒪2)𝑙2𝑚2

× (−1)𝑠+𝑚√(2𝑙1 + 1)(2𝑙2 + 1)(2𝑙3 + 1)
4𝜋 (

𝑙1 𝑙2 𝑙
𝑚1 𝑚2 −𝑚

) (
𝑙1 𝑙2 𝑙

−𝑠1 −𝑠2 𝑠
)

(7.13)

In FuzzifiED, they are stored in the type SphereObs.

SphereObs — Type

The type contains the fields

• s2 :: Int64 and l2m :: Int64— is twice the spin 2𝑠 and twice the maximal angular

momentum 2𝑙max of the observable.

– 47 –

https://docs.fuzzified.world/core/#FuzzifiED.Transf
https://docs.fuzzified.world/models/#FuzzifiED.SphereObs

• get_comp :: Function — a function that sends the component specified by a tuple of

integers (2𝑙, 2𝑚) to a list of terms that specifies the expression of the component.

• stored_q :: Bool — a boolean that specifies whether or not the components of the

observable is stored.

• comps :: Dict{Tuple{Int64, Int64}, Terms}— each component of the observable

stores in the format of a dictionary whose keys are the pairs of integers (2𝑙, 2𝑚) and values are

the lists of terms that specifies the expression of the component.

and can be initialised by the methods

SphereObs(s2 :: Int64, l2m :: Int64, get_comp :: Function)

SphereObs(s2 :: Int64, l2m :: Int64, comps :: Dict)

Their adjoint, addition and multiplication are supported. The related functions are

• StoreComps(obs :: SphereObs) calculates and stores each component of the observ-

able.

• Laplacian(obs :: SphereObs) takes the Laplacian of an observable.

• GetComponent(obs :: SphereObs, l :: Number, m :: Number) returns a spherical

component of the observable 𝒪𝑙𝑚.

• GetPointValue(obs :: SphereObs, theta :: Float64, phi :: Float64) returns

an observable at one point 𝒪(n̂).

Several important types of spherical observables are built-in in FuzzifiED

• GetElectronObs — electron annihilation operator 𝜓𝑓 (n̂).
• GetDensityObs — density operator 𝑛𝑀 (n̂) = ∑𝑓𝑓′ 𝜓†

𝑓 (n̂)𝑀𝑓𝑓′𝜓𝑓′(n̂).
• GetPairingObs — pair operator Δ𝑀 (n̂) = ∑𝑓𝑓′ 𝜓𝑓 (n̂)𝑀𝑓𝑓′𝜓𝑓′ .

In the example of Ising model, to calculate the OPE coefficient 𝑓𝜎𝜎𝜖 = ⟨𝜎|𝑛𝑧
00|𝜖⟩/⟨𝜎|𝑛𝑧

00|0⟩,
one need to first calculate the eigenstates in the ℤ2-odd sector

bs_m = Basis(cfs, [1, -1, 1], qnf)

hmt_m = Operator(bs_m, bs_m, tms_hmt ; red_q = 1, sym_q = 1)

hmt_mat_m = OpMat(hmt_m)

enrg_m, st_m = GetEigensystem(hmt_mat_m, 10)

st0 = st[:, 1]

ste = st[:, 2]

– 48 –

https://docs.fuzzified.world/models/#FuzzifiED.StoreComps-Tuple{SphereObs}
https://docs.fuzzified.world/models/#FuzzifiED.Laplacian-Tuple{SphereObs}
https://docs.fuzzified.world/models/#FuzzifiED.GetComponent-Tuple{SphereObs,%20Number,%20Number}
https://docs.fuzzified.world/models/#FuzzifiED.GetPointValue-Tuple{SphereObs,%20Float64,%20Float64}
https://docs.fuzzified.world/models/#FuzzifiED.GetElectronObs-Tuple{Int64,%20Int64,%20Int64}
https://docs.fuzzified.world/models/#FuzzifiED.GetDensityObs-Tuple{Int64,%20Int64,%20Matrix{%3C:Number}}
https://docs.fuzzified.world/models/#FuzzifiED.GetPairingObs-Tuple{Int64,%20Int64,%20Matrix{%3C:Number}}

sts = st_m[:, 1]

and then construct the density operator

obs_nz = GetDensityObs(nm, 2, sgz)

tms_nz00 = SimplifyTerms(GetComponent(obs_nz, 0.0, 0.0))

nz00 = Operator(bs, bs_m, tms_nz00 ; red_q = 1)

f_sse = abs((sts' * nz00 * ste) / (sts' * nz00 * st0))

Besides the spherical observable, we also provide a type AngModes that superposes under

the rule of angular momentum superposition instead of spherical harmonics triple integral

(𝒜1𝒜2)𝑙𝑚 = ∑
𝑙1𝑚1𝑙2𝑚2

(𝒜1)𝑙1𝑚1(𝒜2)𝑙2𝑚2⟨𝑙1𝑚1𝑙2𝑚2|𝑙𝑚⟩. (7.14)

The interfaces are similar.

7.9 Measuring the entanglement

A non-local quantity that bears particular significance is the entanglement. To calculate

the entanglement, we divide the sphere into two parts 𝐴 and 𝐵. The reduced density matrix of

part 𝐴 is obtained by tracing the density matrix over the part 𝐵

𝜌𝐴(Ψ) = tr𝐵 |Ψ⟩⟨Ψ| (7.15)

The entanglement entropy is 𝑆 = − tr 𝜌𝐴 log 𝜌𝐴 and the entanglement spectrum is the collection

of eigenvalues of 𝜌𝐴 taken negative logarithm.

The detail of the calculation is given in Ref. [55]. Here we only sketch the process. The

creation operator in each orbital is divided into the creation on 𝐴 part and the creation on 𝐵
part.

𝑐†
𝑜 = 𝛼𝑜𝑐†

𝑜,𝐴 + 𝛽𝑚𝑐†
𝑜,𝐵 (7.16)

where |𝛼𝑜|2 + |𝛽𝑜|2 = 1. For the cut in orbital space 𝑚𝑐,

𝛼𝑚𝑓 = Θ(𝑚𝑐 − 𝑚)

where Θ is the Heaviside function ; for the cut in real space along latitude circle 𝜃𝑐,

𝛼𝑚𝑓 = Βcos2 𝜃𝑐/2(𝑠 − 𝑚 + 1, 𝑠 + 𝑚 + 1)1/2

– 49 –

https://docs.fuzzified.world/models/#FuzzifiED.AngModes

where Β is the incomplete beta function.

To calculate the reduced density matrix, we decompose the state into the direct-product

basis of two subsystems

|Ψ⟩ = ∑
𝐾0

𝑣𝐾0 |𝐾0⟩ = ∑
𝐼𝐴𝐽𝐵

𝑀𝐼𝐴𝐽𝐵 |𝐼𝐴⟩|𝐽𝐵⟩ (7.17)

where the indices 𝐾0 ∈ ℋ, 𝐼𝐴 ∈ ℋ𝒜, 𝐽𝐵 ∈ ℋℬ are in the overall Hilbert space and the Hilbert

space of subsystem 𝐴 and 𝐵. The density matrix is then

𝜌𝐴 = MM† (7.18)

and the entanglement spectrum can be obtained from the SVD decomposition of the M matrix.

Like the Hamiltonian, the M matrix is block diagonal, and each block carries different quantum

numbers of the Hilbert spaces of 𝐴 and 𝐵 subsystem 11.

In FuzzifiED, the decomposition of states intomatrix𝑀𝐼𝐴𝐽𝐵 is done by the funciton StateDecompMat

, and the calculation of entanglement spectrum is done by the funciton GetEntSpec

GetEntSpec — Function

GetEntSpec(st :: Vector{<:Number}, bs0 :: Basis, secd_lst :: Vector{Vector{

Vector{Int64}}}, secf_lst :: Vector{Vector{Vector{<:Number}}} ; qnd_a ::

Vector{QNDiag}[, qnd_b :: Vector{QNDiag}], qnf_a :: Vector{QNOffd}[, qnf_b

:: Vector{QNOffd}], amp_oa :: Vector{<:Number}[, amp_ob :: Vector{<:

Number}]) :: Dict{@NamedTuple{secd_a, secf_a, secd_b, secf_b}, Vector{

Float64}}

The arguments are

• st :: Vector{<:Number} — the state to be decomposed into direct-product basis of

two subsystems.

• bs0 :: Basis — the basis of the original state.

• secd_lst :: Vector{Vector{Vector{Int64}}}— the list of QNDiag sectors of sub-

systems to be calculated. Each of its elements is a two element vector ; the first specifies the

sector for subsystem 𝐴, and the second specifies the sector for subsystem B.

11The 𝑀𝐼𝐽 and 𝛼𝑜 in our convention is equivalent to ℱ𝑚,𝐴 and 𝑅𝐴
𝜇𝜈 in the convension of Ref. [55], the conversions

are 𝛼𝑚𝑓 = √ℱ𝑚,𝐴 and 𝑀𝐼𝐽 = 𝑅𝐴
𝜇𝜈/√𝑝.

– 50 –

https://docs.fuzzified.world/core/#FuzzifiED.GetEntSpec-Tuple{Vector{%3C:Number},%20Basis,%20Vector{Vector{Vector{Int64}}},%20Vector{Vector{Vector{Int64}}}}

• secf_lst :: Vector{Vector{Vector{ComplexF64}}}— the list of QNOffd sectors of

subsystems to be calculated. Each of its elements is a two element vector ; the first specifies the

sector for subsystem 𝐴, and the second specifies the sector for subsystem 𝐵.

• qnd_a :: Vector{QNDiag}, qnd_b :: Vector{QNDiag}, qnf_a :: Vector{QNOffd

}, qnf_b :: Vector{QNOffd} — the diagonal and off-diagonal quantum numbers of the sub-

systems A and B. By default qnd_b = qnd_a and qnf_b = qnf_a.

• amp_oa :: Vector{ComplexF64}` and `amp_ob :: Vector{ComplexF64} — arrays

that specify the amplitudes 𝛼𝑜 and 𝛽𝑜. By default 𝛽𝑜 = √1 − 𝛼2
𝑜 .

and the output is a dictionary whose keys are named tuples that specify the sector containing

entries secd_a, secf_a, secd_b, secf_b and values are lists of eigenvalues of the density matrix

in those sectors.

In the example of Ising model, to calculate the entanglement entropy cut from the equator,

we first need to specify the quantum numbers of the subsystems : the conservation of 𝑁𝑒, 𝐿𝑧

and the ℤ2 symmetry.

qnd_a = [GetNeQNDiag(no), GetLz2QNDiag(nm, nf)]

qnf_a = [GetFlavPermQNOffd(nm, nf, [2, 1])]

we then specify the sectors to calculate : The number of electrons in subsystem 𝐴 run from 0
to 𝑁𝑚 ; the angular momenta in subsystem 𝐴 can take all permitted values ; for subsystem 𝐵,

𝑁𝑒,𝐵 = 𝑁𝑚 − 𝑁𝑒,𝐴, 𝐿𝑧,𝐵 = −𝐿𝑧,𝐴 ; the ℤ2 sectors of the two subsystems are the same.

secd_lst = Vector{Vector{Int64}}[]

for nea = 0 : nm

neb = nm - nea

for lza = -min(nea, neb) * (nm - 1) : 2 : min(nea, neb) * (nm - 1)

lzb = -lza

push!(secd_lst, [[nea, lza], [neb, lzb]])

end

end

secf_lst = [[[1], [1]], [[-1], [-1]]]

Finally, we specify the list of amplitute 𝛼𝑚.

amp_oa = [sqrt(beta_inc(m, nm - m + 1, 0.5)) for f = 1 : 2 for m = 1 : nm]

– 51 –

To calculate the entanglement spectrum,

ent_spec = GetEntSpec(st_g, bs, secd_lst, secf_lst ; qnd_a, qnf_a, amp_oa)

The entanglement entropy can be calculated by collecting all the eigenvalues of the density

matrix.

eig_rho = vcat(values(ent_spec)...)

ent_entropy = -sum(eig_rho .* log.(eig_rho))

7.10 Fuzzifino — module for boson-fermion mixture

Fuzzifino is a module for ED calculation on the fuzzy sphere for systems with both bosons

and fermions. The procedure is similar to FuzzifiED. We define several new types SQNDiag,

SQNOffd, SConfs, SBasis, STerm and SOperator that is parallel to the original versions QNDiag,

QNOffd, Conf, Basis, Term and Operator. Several points should be noted.

• For each configuration, a boson part and a fermion part are stored. The boson config-

urations are indexed in the ascending order from the last site to the first site. A maximal total

occupation should be given. The details are given in Appendix A.3.

• The operator string in a term is still stored in the form {𝑝1, 𝑜1, 𝑝2, 𝑜2, … , 𝑝𝑙, 𝑜𝑙}, but
now positive 𝑜 represents fermions, and negative 𝑜 represents boson with site number |𝑜|.
The bosonic creation and annihilation operator acts with an additional factor, e.g., 𝑏†|𝑛⟩ =
√𝑛 + 1|𝑛 + 1⟩, 𝑏|𝑛⟩ = √𝑛|𝑛 − 1⟩ for a single site.

8 Density matrix renormalisation group

Having introduced ED, we now turn to density matrix renormalisation group (DMRG) that

deals with larger systems. We briefly describe its procedure and give an instruction for using

FuzzifiED for DMRG.

8.1 DMRG with ITensor

Practically, the dmrg function in ITensor package automatically uses DMRG to optimise a

matrix product state (MPS) to be the lowest eigenstate of a Hermitian Hamiltonian represented

as a matrix product operator (MPO). To generate the input of the function, one needs to

– 52 –

https://docs.fuzzified.world/fuzzifino/#FuzzifiED.Fuzzifino.SQNDiag
https://docs.fuzzified.world/fuzzifino/#FuzzifiED.Fuzzifino.SQNOffd
https://docs.fuzzified.world/fuzzifino/#FuzzifiED.Fuzzifino.SConfs
https://docs.fuzzified.world/fuzzifino/#FuzzifiED.Fuzzifino.SBasis
https://docs.fuzzified.world/fuzzifino/#FuzzifiED.Fuzzifino.STerm
https://docs.fuzzified.world/fuzzifino/#FuzzifiED.Fuzzifino.SOperator

1. construct a set of sites that carries a certain set of QNDiags,

2. construct a MPO representing the Hamiltonian on the sites from a set of terms (or

OpSum in ITensor), and

3. construct an initial MPS on the sites in the desired symmetry sector.

In FuzzifiED, a new SiteType "FuzzyFermion" is defined that behaves similar to the built-in

"Fermion" type and a single site can be generated from the QNDiags

siteind("FuzzyFermion" ; o :: Int64, qnd :: Vector{QNDiag})

The set of sites can be generated by

GetSites(qnd :: Vector{QNDiag})

In the example of Ising model, for convenience we exchange the Pauli matrices 𝜎𝑥 and 𝜎𝑧

so that the two flavours carry ℤ2-charge 0 and 1. The sites can be constructed by

nm = 12

nf = 2

no = nm * nf

sites = GetSites([

GetNeQNDiag(nm * nf),

GetLz2QNDiag(nm, nf),

GetZnfChargeQNDiag(nm, nf)

])

In ITensor, the MPO is generated from an OpSum and the sites. The OpSum can be directly

converted from the array of terms. In the example of Ising model,

sgx = [0 1 ; 1 0]

sgz = [1 0 ; 0 -1]

ps_pot = [4.75, 1.] ./ 2

tms_hmt = SimplifyTerms(

GetDenIntTerms(nm, 2, ps_pot) -

GetDenIntTerms(nm, 2, ps_pot, sgx) -

3.16 * GetPolTerms(nm, nf, sgz)

)

os_hmt = OpSum(tms_hmt)

hmt = MPO(os_hmt, sites)

– 53 –

To calculate the ℤ2-even 𝐿𝑧 = 0 sector, the initial state can be taken as the all the ℤ2-even

sites being filled and all the ℤ2-odd sites being empty12

cfi_p = [isodd(o) ? 1 : 0 for o = 1 : no]

sti_p = MPS(sites, string.(cfi_p))

Having these ingrediants ready, we can call the dmrg function. To ensure performance, the

maximal bond dimension should be increased gradually and the noise decreased gradually to 0.

An example that deals with maximal bond dimension 500 is

E0, st0 = dmrg(hmt, sti_p ;

nsweeps = 10,

maxdim = [10,20,50,100,200,500],

noise = [1E-4,3E-5,1E-5,3E-6,1E-6,3E-7],

cutoff = [1E-8])

To generate a ℤ2-odd initial state, we can simply flip the spin on the first orbital

cfi_m = [(isodd(o) == (o > 2)) ? 1 : 0 for o = 1 : no]

sti_m = MPS(sites, string.(cfi_m))

Es, sts = dmrg(hmt, sti_m ;

nsweeps = 10,

maxdim = [10,20,50,100,200,500],

noise = [1E-4,3E-5,1E-5,3E-6,1E-6,3E-7],

cutoff = [1E-8])

The first excited ℤ2-even state can be generated by adding a projector 𝑤|0⟩⟨0| to the MPO

Ee, ste = dmrg(hmt, [st0], sti_p ;

nsweeps = 10,

maxdim = [10,20,50,100,200,500],

noise = [1E-4,3E-5,1E-5,3E-6,1E-6,3E-7],

cutoff = [1E-8],

weight = 100)

The inner product can be measured by the ITensor function inner. For example, to measure

the angular momentum 𝐿2 of the ground state,

tms_l2 = GetL2Terms(nm, 2)

12Note that ITensor takes the string "1" instead of the number 1 as occupied and "0" instead of 0 as filled

– 54 –

l2 = MPO(OpSum(tms_l2), sites)

val_l20 = inner(st0', l2, st0)

To measure the OPE coefficient 𝑓𝜎𝜎𝜖 = ⟨𝜎|𝑛𝑥
00|𝜖⟩/⟨𝜎|𝑛𝑥

00|0⟩13

obs_nx = GetDensityObs(nm, 2, sgx)

tms_nx00 = SimplifyTerms(GetComponent(obs_nx, 0.0, 0.0))

nx00 = MPO(OpSum(tms_nx00), sites)

f_sse = abs(inner(sts', nx00, ste) / inner(sts', nx00, st0))

8.2 The EasySweep extension

The extension EasySweep facilitates the management of DMRG process. It automatically

records the intermediate results and recover these results if a job is stopped and run again on

HPC. It also manages the gradual increase of maximal bond dimensions and the determination

of convergence by the criteria of energy. This extension contains the following functions :

• GetMPOSites returns the MPO and sites for given operator terms and a Hilbert space

with given quantum numbers. The function first checks if the MPO and sites are already stored

in a specified file. If they are already stored, they are read and returned. Otherwise the sites

are generated from with the quantum numbers and the MPO is generated from the terms. The

MPO and sites are then written into the file and returned14.

• GetMPO returns the MPO for given operator terms and a given set of sites. The function

first checks if the MPO is already stored in a specified file. If it is already stored, it is read and

returned. Otherwise MPO is generated from the terms. The MPO is then written into the file

and returned.

• SweepOne performs one round of DMRG sweeps for a given maximal bond dimensions

𝐷𝑚 and returns the energy and the MPS. The function first checks if the calculation has already

been done and the results are already stored in a specified file. If they are already stored, they

are read and returned. Otherwise the DMRG process is performed with a specified maximal

bond dimension and number of sweeps. The sweeps are ended if the energy difference is less

13Note that the indices 𝑥 and 𝑧 have already been exchanged here.
14We recommend the package ITensorMPOConstruction stored at https://github.com/ITensor/

ITensorMPOConstruction.jl to construct MPO

– 55 –

https://docs.fuzzified.world/itensors/#FuzzifiED.GetMPOSites-Tuple{String,%20Union{Sum{Scaled{ComplexF64,%20Prod{Op}}},%20Vector{Term}},%20Vector{QNDiag}}
https://docs.fuzzified.world/itensors/#FuzzifiED.GetMPO-Tuple{String,%20Union{Sum{Scaled{ComplexF64,%20Prod{Op}}},%20Vector{Term}},%20Vector{%3C:Index}}
https://docs.fuzzified.world/itensors/#FuzzifiED.SweepOne-Tuple{String,%20MPO,%20MPS,%20Int64}
https://github.com/ITensor/ITensorMPOConstruction.jl
https://github.com/ITensor/ITensorMPOConstruction.jl

than a tolerence or some alternative criteria. The resulting energy and MPS are written into

file and returned.

• EasySweep automatically performs several rounds of DMRG sweeps with increasing

bond dimensions and returns energy and MPS. The function first checks the calculation has

been partly done and the intermediate results have been stored in a specified file. The calculation

is then picked up from the round that is previously stopped. The entire process is stopped if the

energy difference between two rounds is less than a certain tolerence or the bond dimension of

the result is less than 0.9 times the maximal bond dimension. The resulting energy and MPS

are written into file and returned.

To use the this extension, one need to use the packages ITensors, ItensorMPS and HDF5.

A path need to be created a priori to store the result HDF5 files. We recommend using the

package ITensorMPOConstruction to generate the MPO.

using FuzzifiED

using ITensors, ITensorMPS, HDF5

using ITensorMPOConstruction

const sgx = [0 1 ; 1 0]

const sgz = [1 0 ; 0 -1]

function MyMPO(os, sites)

operatorNames = ["I", "C", "Cdag", "N"]

opCacheVec = [[OpInfo(ITensors.Op(name, n), sites[n]) for name in

operatorNames] for n in eachindex(sites)]

return MPO_new(os, sites ; basis_op_cache_vec = opCacheVec)

end

nm = 12

nf = 2

no = nm * nf

path = "nm_$(nm)_tmp/"

mkpath(path)

Like the previous section, we first put in the terms for Hamiltonian and the QNDiags

ps_pot = [4.75, 1.] ./ 2

– 56 –

https://docs.fuzzified.world/itensors/#FuzzifiED.EasySweep-Tuple{String,%20MPO,%20MPS}

tms_hmt = SimplifyTerms(

GetDenIntTerms(nm, 2, ps_pot) -

GetDenIntTerms(nm, 2, ps_pot, sgx) -

3.16 * GetPolTerms(nm, 2, sgz)

)

qnd = [

GetNeQNDiag(no),

GetLz2QNDiag(nm, nf),

GetZnfChargeQNDiag(nm, nf)

]

The Sites and Hamiltonian MPO can be generated with the function GetMPOSites.

hmt, sites = GetMPOSites("hmt", tms_hmt, qnd ; path, mpo_method = MyMPO)

To generate the initial MPS that respects the ℤ2 symmetry, we can use a direct product state.

cfi_p = [isodd(o) ? 1 : 0 for o = 1 : no]

sti_p = MPS(sites, string.(cfi_p))

cfi_m = [(isodd(o) == (o > 2)) ? 1 : 0 for o = 1 : no]

sti_m = MPS(sites, string.(cfi_m))

The lowest eigenenergies and the eigenstate MPSs |0⟩, |𝜎⟩, |𝜖⟩ can be easily generated by the

function EasySweep.

E0, st0 = EasySweep("g", hmt, sti_p ; path)

Ee, ste = EasySweep("e", hmt, sti_p ; path, proj = ["g"])

Es, sts = EasySweep("s", hmt, sti_m ; path)

To measure the angular momentum 𝐿2 of the ground state, we generate the MPO for 𝐿2.

tms_l2 = GetL2Terms(nm, 2)

l2 = GetMPO("l2", tms_l2, sites ; path, mpo_method = MyMPO)

val_l20 = inner(st0', l2, st0)

Similarly, to measure the OPE coefficient 𝑓𝜎𝜎𝜖 = ⟨𝜎|𝑛𝑥
00|𝜖⟩/⟨𝜎|𝑛𝑥

00|0⟩

obs_nx = GetDensityObs(nm, 2, sgx)

tms_nx00 = SimplifyTerms(GetComponent(obs_nx, 0.0, 0.0))

nx00 = GetMPO("nx00", tms_nx00, sites ; path, mpo_method = MyMPO)

f_sse = abs(inner(sts', nx00, ste) / inner(sts', nx00, st0))

– 57 –

9 Practical examples

FuzzifiED can help reproduce almost all the ED and DMRG results in fuzzy sphere works.

We offer a series of such examples to help the users get started with the package. The code can

be found in the examples directory of the source code repository.

• ising_spectrum.jl calculates the spectrum of 3d Isingmodel on fuzzy sphere at𝑁𝑚 =
12. For each (𝒫, 𝒵, ℛ) sector, 20 states are calculated. This example reproduces Table I and

Figure 4 in Ref. [1].

• ising_phase_diagram.jl calculates the phase diagram of fuzzy sphere Ising modelby

calculating the order parameter ⟨𝑀2⟩. This example reproduces Figure 3 in Ref. [1].

• ising_ope.jl calculates various OPE coefficients at 𝑁𝑚 = 12 by taking overlaps

between CFT states and density operators and composite. This example reproduces Figure 2

and Table I in Ref. [2].

• ising_correlator.jl calculates the 𝜎𝜎 two-point function on sphere and the 𝜎𝜎𝜎𝜎
four-point function on sphere, 0 and ∞. This example reproduces Figures 1c and 2a in Ref. [3].

• ising_optimisation.jl defines a cost function as the square sum of the deviations

of descendants and stress tensor to evaluate the conformal symmetry for Ising model and min-

imises this cost function to find the best parameter.

• ising_full_spectrum.jl calculates the full spectrum of 3d Isingmodel on fuzzy sphere

at 𝑁𝑚 = 10 for sector (𝒫, 𝒵, ℛ) = (1, 1, 1).
• ising_space_entangle.jl calculates the entanglement entropy of the Ising ground

state along the real space cut of 𝜃 = 0.500𝜋 and 0.499𝜋 respectively, and use these two

data to extract finite size 𝐹 -function without sustracting the IQHE contribution. This example

reproduces [10].

• ising_orbital_entangle.jl calculates the entanglement entropy of the Ising ground

state along the orbital space cut at 𝑚 = 0, and also the entanglement spectrum in the half-filled

𝑙𝑧 = 0, 1 and both ℤ2 sectors.

• ising_generator.jl examines the quality of conformal symmetry at 𝑁𝑚 = 12 by

examining the matrix elements of conformal generators 𝑃 𝑧 + 𝐾𝑧 and compare the states (𝑃 𝑧 +
𝐾𝑧)Φ⟩ with the CFT expectations. This example reproduces Figure 7 in Ref. [14].

– 58 –

https://github.com/FuzzifiED/FuzzifiED.jl/blob/main/examples/ising_spectrum.jl
https://github.com/FuzzifiED/FuzzifiED.jl/blob/main/examples/ising_phase_diagram.jl
https://github.com/FuzzifiED/FuzzifiED.jl/blob/main/examples/ising_ope.jl
https://github.com/FuzzifiED/FuzzifiED.jl/blob/main/examples/ising_correlator.jl
https://github.com/FuzzifiED/FuzzifiED.jl/blob/main/examples/ising_optimisation.jl
https://github.com/FuzzifiED/FuzzifiED.jl/blob/main/examples/ising_full_spectrum.jl
https://github.com/FuzzifiED/FuzzifiED.jl/blob/main/examples/ising_space_entangle.jl
https://github.com/FuzzifiED/FuzzifiED.jl/blob/main/examples/ising_orbital_entangle.jl
https://github.com/FuzzifiED/FuzzifiED.jl/blob/main/examples/ising_generator.jl

• defect_spectrum.jl calculates the spectrum of magnetic line defect in 3d Ising model

in 𝑙𝑧 = 0, 𝒫 = ±1 and 𝑙𝑧 = 1 sectors, calibrated by bulk 𝑇 . This example reproduces Table I

in Ref. [6].

• defect_correlator.jl calculates the 1-pt function 𝜎 and 2-pt function 𝜎 ̂𝜙 of magnetic

line defect in 3d Ising model. The normalisation of the correlators require extra bulk data. This

example reproduces Figure 4 in Ref. [6].

• defect_changing.jl calculates the spectrum of the defect creation and changing op-

erators of the magnetic line defect in 3d Ising model. This example reproduces Table 2 and

Figure 5 in Ref. [9].

• defect_overlap.jl calculates the 𝑔-function of magnetic line defect in 3d Ising model

using the ovelaps between the bulk, defect ground state and the lowest defect-creation state.

This example reproduces Figure 6 in Ref. [9].

• cusp_dim.jl calculates the scaling dimension of the cusp of the magnetic line defect

in 3d Ising model as a function of the angle 𝜃. This example reproduces Table 2, upper panel

in Ref. [11].

• surface_ordinary_spectrum.jl calculates the spectrum of ordinary surface CFT in

3d Ising model calibrated by surface displacement operator 𝐷 in the orbital boundary scheme.

This example reproduces Figures 3 and 4 in Ref. [12].

• surface_normal_spectrum.jl calculates the spectrum of normal surface CFT in 3d

Ising model calibrated by surface displacement operator 𝐷 in the orbital boundary scheme. This

example reproduces Figure 5 in Ref. [12].

• o3_wf_spectrum.jl calculates the spectrum of O(3) Wilson-Fisher CFT using the

bilayer Heisenberg model. This example reproduces Table I and Figure 2 in Ref. [8].

• so5_spectrum.jl calculates the spectrum of SO(5) DQCP on fuzzy sphere. This ex-

ample reproduces Table II in Ref. [4].

• sp3_spectrum.jl calculates the spectrum of Sp(3) CFT on fuzzy sphere. This example

reproduces Table I in Ref. [16].

• ising_frac_fermion.jl calculates the spectrum of 3d Ising model on fuzzy sphere for

fermions at fractional filling 𝜈 = 1/3. This example reproduces Figure 10 in Ref. [17].

– 59 –

https://github.com/FuzzifiED/FuzzifiED.jl/blob/main/examples/defect_spectrum.jl
https://github.com/FuzzifiED/FuzzifiED.jl/blob/main/examples/defect_correlator.jl
https://github.com/FuzzifiED/FuzzifiED.jl/blob/main/examples/defect_changing.jl
https://github.com/FuzzifiED/FuzzifiED.jl/blob/main/examples/defect_overlap.jl
https://github.com/FuzzifiED/FuzzifiED.jl/blob/main/examples/cusp_dim.jl
https://github.com/FuzzifiED/FuzzifiED.jl/blob/main/examples/surface_ordinary_spectrum.jl
https://github.com/FuzzifiED/FuzzifiED.jl/blob/main/examples/surface_normal_spectrum.jl
https://github.com/FuzzifiED/FuzzifiED.jl/blob/main/examples/o3_wf_spectrum.jl
https://github.com/FuzzifiED/FuzzifiED.jl/blob/main/examples/so5_spectrum.jl
https://github.com/FuzzifiED/FuzzifiED.jl/blob/main/examples/sp3_spectrum.jl
https://github.com/FuzzifiED/FuzzifiED.jl/blob/main/examples/ising_frac_fermion.jl

• ising_frac_boson.jl calculates the spectrum of 3d Ising model on fuzzy sphere for

bosons at fractional filling 𝜈 = 1/2 with the module Fuzzifino. This example reproduces Fig-

ure 12a, b in Ref. [17].

• ising_spectrum_krylov.jl calculates the spectrum of 3d Ising model on fuzzy sphere

by calling the eigsolve function in KrylovKit.jl instead of Arpack.

• ising_spectrum_cuda.jl calculates the spectrum of 3d Ising model on fuzzy sphere

for one sector by performing the sparse matrix multiplication on CUDA.

– 60 –

https://github.com/FuzzifiED/FuzzifiED.jl/blob/main/examples/ising_frac_boson.jl
https://github.com/FuzzifiED/FuzzifiED.jl/blob/main/examples/ising_spectrum_krylov.jl
https://github.com/FuzzifiED/FuzzifiED.jl/blob/main/examples/ising_spectrum_cuda.jl

A Data structures in exact diagonalisation

In this appendix, we describe several data structures that are used in the exact diagonalisa-

tion (ED) process, viz. Lin table for the reverse look-up process that returns the index from the

binary string, the compressed sparse column (CSC) that is used to store the sparse matrices,

and the indexing of boson configurations.

A.1 Construction of Lin table

In this section, we describe the construction of Lin table which is used for a reverse look-up

process that returns the index 𝑖 from the binary string 𝑐𝑜𝑛𝑓𝑖 mentioned in Section 7.2.

Each binary string 𝑐𝑜𝑛𝑓𝑖 is devided into a left part 𝑙(𝑐𝑜𝑛𝑓𝑖) from the 𝑁𝑜𝑟-th bit to the 𝑁𝑜−1-
th bit and a right part 𝑟(𝑐𝑜𝑛𝑓𝑖) from the 0-th bit to the 𝑁𝑜𝑟 −1-th bit from the right. The cut 𝑁𝑜𝑟

is typically taken as 𝑁𝑜/2. Two arrays 𝑙𝑖𝑑 and 𝑟𝑖𝑑 with length 2𝑁𝑜−𝑁𝑜𝑟 and 2𝑁𝑜𝑟 are constructed,

such that

𝑖 = 𝑙𝑖𝑑𝑙(𝑐𝑜𝑛𝑓𝑖) + 𝑟𝑖𝑑𝑟(𝑐𝑜𝑛𝑓𝑖) (A.1)

As a simplest example for this, consider the configurations on 6 sites filled with 3 particles. The

construction is listed in Table 2.

A.2 Compressed sparse column (CSC) sparse matrix

In this section, we describe the storage of sparse matrices in the format of compressed

sparse column (CSC) mentioned in Section 7.5.

In the CSC format, the matrix is stored in three arrays. We first index elements from 1
to the number of elements 𝑁el in the ascending order from the column to column, and in each

column from row to row.

1. The array 𝑐𝑜𝑙𝑝𝑡𝑟 records the column index of each element. It is of length 𝑁 + 1
where 𝑁 is the number of columns. The first 𝑁 items record the index of the first element in

each column. The last item records 𝑁el + 1, so that the elements that belong to the 𝑖-th column

have index from 𝑐𝑜𝑙𝑝𝑡𝑟𝑖 to 𝑐𝑜𝑙𝑝𝑡𝑟𝑖+1 − 1.
2. The array 𝑟𝑜𝑤𝑖𝑑 records the row index of each element and is of length 𝑁el.

3. The array 𝑒𝑙𝑣𝑎𝑙 records the value of each element and is of length 𝑁el.

We give a simple example in Table 3.

– 61 –

𝑐 𝑙𝑖𝑑𝑐 𝑟𝑖𝑑𝑐 𝑖 𝑐𝑜𝑛𝑓𝑖 𝑙𝑖 𝑟𝑖 𝑙𝑖𝑑𝑙𝑖 𝑟𝑖𝑑𝑟𝑖 𝑖 𝑐𝑜𝑛𝑓𝑖 𝑙𝑖 𝑟𝑖 𝑙𝑖𝑑𝑙𝑖 𝑟𝑖𝑑𝑟𝑖

0 1 0 1 000111 0 7 1 0 11 100011 4 3 11 0

1 2 0 2 001011 1 3 2 0 12 100101 4 5 11 1

2 5 1 3 001101 1 5 2 1 13 100110 4 6 11 2

3 8 0 4 001110 1 6 2 2 14 101001 5 1 14 0

4 11 2 5 010011 2 3 5 0 15 101010 5 2 14 1

5 14 1 6 010101 2 5 5 1 16 101100 5 4 14 2

6 17 2 7 010110 2 6 5 2 17 110001 6 1 17 0

7 20 0 8 011001 3 1 8 0 18 110010 6 2 17 1

9 011010 3 2 8 1 19 110100 6 4 17 2

10 011100 3 4 8 2 20 111000 7 0 20 0

Table 2. An example of explicit construction of the Lin table in the configurations on 6 sites filled with

3 particles. Here we use a shorthand notation 𝑙𝑖 = 𝑙(𝑐𝑜𝑛𝑓𝑖) and 𝑟𝑖 = 𝑟(𝑐𝑜𝑛𝑓𝑖)

𝑀 = (

10 40 0 0
20 0 70 80
0 0 0 90

30 50 0 100
0 60 0 0

)

𝑖 1 2 3 4 5 6 7 8 9 10

𝑐𝑜𝑙𝑝𝑡𝑟𝑖 1 4 7 8 11

𝑟𝑜𝑤𝑖𝑑𝑖 1 2 4 1 4 5 2 2 3 4

𝑒𝑙𝑣𝑎𝑙𝑖 10 20 30 40 50 60 70 80 90 100

Table 3. An example of the storing a 4 × 5 matrix into the CSC format.

A.3 Indexing the boson configurations

In this section, we describe the indexing of the bosonic configurations with 𝑁𝑜 sites and a

maximal total occupation 𝑁max mentioned in Section 7.10. This is equivalent to the common

– 62 –

procedure indexing 𝑁𝑜 + 1 sites with a fixed occupation 𝑁𝑒 = 𝑁max. The boson configurations

are indexed in the ascending order from the last site to the first site. E.g., for 3 sites with

maximal occupation 2, the configurations for 𝑛3𝑛2𝑛1 are 000, 001, 002, 010, 011, 020, 100,

101, 110, 200 numbered from 1 to 10.

The total number of configurations is the number of non-negative integer solutions to the

Diophatine equation 𝑛1 + 𝑛2 + ⋯ + 𝑛𝑁𝑜 + 𝑛𝑁𝑜+1 = 𝑁max, which is

𝑁cf(𝑁𝑜, 𝑁max) = (𝑁𝑜 + 𝑁max)!
𝑁𝑜!𝑁max!

(A.2)

The index of the

𝑖𝑑(𝑛𝑁𝑜𝑛𝑁𝑜−1 … 𝑛1; 𝑁max) = 𝑁cf(0) + 𝑁cf(1) + ⋯ + 𝑁cf(𝑛𝑁𝑜 − 1)

+ 𝑁cf(𝑛𝑁𝑜1) + 𝑁cf(𝑛𝑁𝑜2) + ⋯ + 𝑁cf(𝑛𝑁𝑜(𝑛𝑁𝑜−1 − 1))

+ …

+ 𝑁cf(𝑛𝑁𝑜 … 𝑛20) + 𝑁cf(𝑛𝑁𝑜 … 𝑛21) + ⋯ + 𝑁cf(𝑛𝑁𝑜 … 𝑛2𝑛1) (A.3)

where 𝑁cf(𝑛𝑁𝑜𝑛𝑁𝑜−1 … 𝑛𝑜) is the number of configurations that begin with 𝑛𝑁𝑜𝑛𝑁𝑜−1 … 𝑛𝑜.

𝑁cf(𝑛𝑁𝑜𝑛𝑁𝑜−1 … 𝑛𝑜) =
[(𝑜 − 1) + (𝑁max − 𝑛𝑁𝑜 − ⋯ − 𝑛𝑜)]!

(𝑜 − 1)!(𝑁max − 𝑛𝑁𝑜 − ⋯ − 𝑛𝑜)!
(A.4)

Hence, the index of each configuration is

𝑖𝑑(𝑛𝑁𝑜𝑛𝑁𝑜−1 … 𝑛1; 𝑁max) =
𝑁𝑜
∑
𝑜=1

𝑛𝑜
∑
𝑖=0

[(𝑜 − 1) + (𝑁max − ∑𝑁𝑜
𝑜′=𝑜 𝑛𝑜′𝑜)]!

(𝑜 − 1)! (𝑁max − ∑𝑁𝑜
𝑜′=𝑜 𝑛𝑜′)!

(A.5)

The reserse look-up is realised by a similar Lin-table, with the left part and right part taken

as

𝑙({𝑛𝑜}) = 𝑖𝑑(𝑛𝑁𝑜𝑛𝑁𝑜−1 … 𝑛𝑁𝑜𝑟+1; 𝑁max) and 𝑟({𝑛𝑜}) = 𝑖𝑑(𝑛𝑁𝑜𝑟𝑛𝑁𝑜𝑟−1 … 𝑛1; 𝑁max). (A.6)

B Tutorial code

In Sections 7 and 8, we demonstrate the usage of FuzzifiED interfaces with an example

that

– 63 –

1. calculates the lowest eigenstates in the symmetry sector 𝐿𝑧 = 0 and (𝒫, 𝒵, ℛ) =
(+, +, +) (for DMRG, 𝒵 = + only),

2. measures their total angular momenta (for DMRG, the ground state only), and

3. calcultes the OPE coefficient 𝑓𝜎𝜎𝜖 = ⟨𝜎|𝑛𝑧
00|𝜖⟩/⟨𝜎|𝑛𝑧

00|0⟩.
In this Appendix, we collect the full version of the codes, including

1. the ED code that uses only the core functions,

2. the ED code that uses the built-in models,

3. the DMRG code that converts the format into ITensor,

4. the DMRG code that uses the EasySweep extension.

B.1 ED using core functions

1 using FuzzifiED

2 using WignerSymbols

3

4 let

5

6 nf = 2

7 nm = 12

8 no = nf * nm

9 qnd = [

10 QNDiag(fill(1, no)),

11 QNDiag([(o - 1) ÷ nf * 2 - (nm - 1) for o = 1 : no])

12]

13 cfs = Confs(no, [nm, 0], qnd)

14

15 qnf = [

16 QNOffd([isodd(o) ? o + 1 : o - 1 for o = 1 : no], true, ComplexF64[

isodd(o) ? -1 : 1 for o = 1 : no]),

17 QNOffd([isodd(o) ? o + 1 : o - 1 for o = 1 : no]),

18 QNOffd([isodd(o) ? no - o : no + 2 - o for o = 1 : no], ComplexF64(-1)

.^ (collect(0 : nm * nf - 1) .÷ nf))

19]

20 bs = Basis(cfs, [1, 1, 1], qnf)

21

– 64 –

22 ps_pot = [4.75, 1.] * 2.

23 h = 3.16

24 tms_hmt = Term[]

25 m = zeros(Int64, 4)

26 for m[1] = 0 : nm - 1, m[2] = 0 : nm - 1, m[3] = 0 : nm - 1

27 m[4] = m[1] + m[2] - m[3]

28 (m[4] < 0 || m[4] >= nm) && continue

29 f = [0, 1, 1, 0]

30 o = m .* nf .+ f .+ 1

31 mr = m .- s

32

33 val = ComplexF64(0)

34 for l in eachindex(ps_pot)

35 (abs(mr[1] + mr[2]) > nm - l || abs(mr[3] + mr[4]) > nm - l) && break

36 val += ps_pot[l] * (2 * nm - 2 * l + 1) * wigner3j(s, s, nm - l, mr

[1], mr[2], -mr[1] - mr[2]) * wigner3j(s, s, nm - l, mr[4], mr[3],

-mr[3] - mr[4])

37 end

38 tms_hmt += Terms(val, [1, o[1], 1, o[2], 0, o[3], 0, o[4]])

39 end

40 for m = 0 : nm - 1

41 o = m * nf .+ [1, 2]

42 tms_hmt += Terms(-h, [1, o[1], 0, o[2]])

43 tms_hmt += Terms(-h, [1, o[2], 0, o[1]])

44 end

45

46 hmt = Operator(bs, tms_hmt)

47 hmt_mat = OpMat(hmt)

48 enrg, st = GetEigensystem(hmt_mat, 10)

49

50 tms_lz =

51 [begin m = div(o - 1, nf)

52 Term(m - s, [1, o, 0, o])

53 end for o = 1 : no]

54 tms_lp =

55 [begin m = div(o - 1, nf)

– 65 –

56 Term(sqrt(m * (nm - m)), [1, o, 0, o - nf])

57 end for o = nf + 1 : no]

58 tms_lm = tms_lp'

59 tms_l2 = SimplifyTerms(tms_lz * tms_lz - tms_lz + tms_lp * tms_lm)

60 l2 = Operator(bs, tms_l2)

61 l2_mat = OpMat(l2)

62 l2_val = [st[:, i]' * l2_mat * st[:, i] for i in eachindex(enrg)]

63

64 bs_m = Basis(cfs, [1, -1, 1], qnf)

65 hmt = Operator(bs_m, bs_m, tms_hmt ; red_q = 1, sym_q = 1)

66 hmt_mat = OpMat(hmt)

67 enrg_m, st_m = GetEigensystem(hmt_mat, 10)

68 st0 = st[:, 1]

69 ste = st[:, 2]

70 sts = st_m[:, 1]

71

72 tms_nz00 = Term[]

73 for m = 0 : nm - 1

74 o = m * nf .+ [1, 2]

75 # Record the transverse field term

76 tms_nz00 += Terms(1 / nm, [1, o[1], 0, o[1]])

77 tms_nz00 += Terms(-1 / nm, [1, o[2], 0, o[2]])

78 end

79 nz00 = Operator(bs, bs_m, tms_nz00 ; red_q = 1)

80 f_sse = abs((sts' * nz00 * ste) / (sts' * nz00 * st0))

B.2 ED using built-in models

1 using FuzzifiED

2 sg1 = [1 0 ; 0 0]

3 sg2 = [0 0 ; 0 1]

4 sgx = [0 1 ; 1 0]

5 sgz = [1 0 ; 0 -1]

6

7 nm = 12

8 qnd = [

9 GetNeQNDiag(2 * nm),

– 66 –

10 GetLz2QNDiag(nm, 2)

11]

12 cfs = Confs(2 * nm, [nm, 0], qnd)

13

14 qnf = [

15 GetParityQNOffd(nm, 2, [2, 1], [-1, 1]),

16 GetFlavPermQNOffd(nm, 2, [2, 1]),

17 GetRotyQNOffd(nm, 2)

18]

19 bs = Basis(cfs, [1, 1, 1], qnf)

20

21 tms_hmt = SimplifyTerms(

22 GetDenIntTerms(nm, 2, 2 .* [4.75, 1.], sg1, sg2) -

23 3.16 * GetPolTerms(nm, 2, sgx)

24)

25

26 hmt = Operator(bs, tms_hmt)

27 hmt_mat = OpMat(hmt)

28 enrg, st = GetEigensystem(hmt_mat, 10)

29

30 tms_l2 = GetL2Terms(nm, 2)

31 l2 = Operator(bs, tms_l2)

32 l2_mat = OpMat(l2)

33 l2_val = [st[:, i]' * l2_mat * st[:, i] for i in eachindex(enrg)]

34

35 bs_m = Basis(cfs, [1, -1, 1], qnf)

36 hmt = Operator(bs_m, bs_m, tms_hmt ; red_q = 1, sym_q = 1)

37 hmt_mat = OpMat(hmt)

38 enrg_m, st_m = GetEigensystem(hmt_mat, 10)

39 st0 = st[:, 1]

40 ste = st[:, 2]

41 sts = st_m[:, 1]

42

43 obs_nz = GetDensityObs(nm, 2, sgz)

44 tms_nz00 = SimplifyTerms(GetComponent(obs_nz, 0.0, 0.0))

45 nz00 = Operator(bs, bs_m, tms_nz00 ; red_q = 1)

– 67 –

46 f_sse = abs((sts' * nz00 * ste) / (sts' * nz00 * st0))

B.3 DMRG using format conversion into ITensor

1 using FuzzifiED

2 using ITensors, ITensorMPS

3 FuzzifiED.ElementType = Float64

4 sgx = [0 1 ; 1 0]

5 sgz = [1 0 ; 0 -1]

6

7 nm = 12

8 nf = 2

9 no = nm * nf

10

11 sites = GetSites([

12 GetNeQNDiag(nm * nf),

13 GetLz2QNDiag(nm, nf),

14 GetZnfChargeQNDiag(nm, nf)

15])

16 ps_pot = [4.75, 1.] ./ 2

17 tms_hmt = SimplifyTerms(

18 GetDenIntTerms(nm, 2, ps_pot) -

19 GetDenIntTerms(nm, 2, ps_pot, sgx) -

20 3.16 * GetPolTerms(nm, nf, sgz)

21)

22 os_hmt = OpSum(tms_hmt)

23 hmt = MPO(os_hmt, sites)

24

25 cfi_p = [isodd(o) ? 1 : 0 for o = 1 : no]

26 sti_p = MPS(sites, string.(cfi_p))

27 cfi_m = [(isodd(o) == (o > 2)) ? 1 : 0 for o = 1 : no]

28 sti_m = MPS(sites, string.(cfi_m))

29

30 E0, st0 = dmrg(hmt, sti_p ;

31 nsweeps = 10,

32 maxdim = [10,20,50,100,200,500],

33 noise = [1E-4,3E-5,1E-5,3E-6,1E-6,3E-7],

– 68 –

34 cutoff = [1E-8])

35 Ee, ste = dmrg(hmt, [st0], sti_p ;

36 nsweeps = 10,

37 maxdim = [10,20,50,100,200,500],

38 noise = [1E-4,3E-5,1E-5,3E-6,1E-6,3E-7],

39 cutoff = [1E-8],

40 weight = 100)

41 Es, sts = dmrg(hmt, sti_m ;

42 nsweeps = 10,

43 maxdim = [10,20,50,100,200,500],

44 noise = [1E-4,3E-5,1E-5,3E-6,1E-6,3E-7],

45 cutoff = [1E-8])

46

47 tms_l2 = GetL2Terms(nm, 2)

48 l2 = MPO(OpSum(tms_l2), sites)

49 val_l20 = inner(st0', l2, st0)

50

51 obs_nx = GetDensityObs(nm, 2, sgx)

52 tms_nx00 = SimplifyTerms(GetComponent(obs_nx, 0.0, 0.0))

53 nx00 = MPO(OpSum(tms_nx00), sites)

54 f_sse = abs(inner(sts', nx00, ste) / inner(sts', nx00, st0))

B.4 DMRG with Easy Sweep

1 using FuzzifiED

2 using ITensors, ITensorMPS, HDF5

3 using ITensorMPOConstruction

4 const sgx = [0 1 ; 1 0]

5 const sgz = [1 0 ; 0 -1]

6

7 function MyMPO(os, sites)

8 operatorNames = ["I", "C", "Cdag", "N"]

9 opCacheVec = [[OpInfo(ITensors.Op(name, n), sites[n]) for name in

operatorNames] for n in eachindex(sites)]

10 return MPO_new(os, sites ; basis_op_cache_vec = opCacheVec)

11 end

12

– 69 –

13 nm = 12

14 nf = 2

15 no = nm * nf

16

17 path = "nm_$(nm)_tmp/"

18 mkpath(path)

19

20 ps_pot = [4.75, 1.] ./ 2

21 tms_hmt = SimplifyTerms(

22 GetDenIntTerms(nm, 2, ps_pot) -

23 GetDenIntTerms(nm, 2, ps_pot, sgx) -

24 3.16 * GetPolTerms(nm, 2, sgz)

25)

26 qnd = [

27 GetNeQNDiag(no),

28 GetLz2QNDiag(nm, nf),

29 GetZnfChargeQNDiag(nm, nf)

30]

31 hmt, sites = GetMPOSites("hmt", tms_hmt, qnd ; path, mpo_method = MyMPO)

32

33 cfi_p = [isodd(o) ? 1 : 0 for o = 1 : no]

34 sti_p = MPS(sites, string.(cfi_p))

35 cfi_m = [(isodd(o) == (o > 2)) ? 1 : 0 for o = 1 : no]

36 sti_m = MPS(sites, string.(cfi_m))

37

38 E0, st0 = EasySweep("g", hmt, sti_p ; path)

39 Ee, ste = EasySweep("e", hmt, sti_p ; path, proj = ["g"])

40 Es, sts = EasySweep("s", hmt, sti_m ; path)

41

42 tms_l2 = GetL2Terms(nm, 2)

43 l2 = GetMPO("l2", tms_l2, sites ; path, mpo_method = MyMPO)

44 l2_val = st0' * l2 * stg

45

46 obs_nx = GetDensityObs(nm, 2, sgx)

47 tms_nx00 = SimplifyTerms(GetComponent(obs_nx, 0.0, 0.0))

48 nx00 = GetMPO("nx00", tms_nx00, sites ; path, mpo_method = MyMPO)

– 70 –

49 f_sse = abs(inner(sts', nx00, ste) / inner(sts', nx00, st0))

C Glossary for interfaces in FuzzifiED

AngModes

Basis

Confs

CuSparseMatrixCSC

EasySweep

FuzzifiED.ElementType

FilterComponent

FilterL2

GetC2Terms

GetComponent

GetConfId

GetConfWeight

GetDenIntTerms

GetDensityMod

GetDensityObs

GetEigensystem

GetEigensystemCuda

GetEigensystemKrylov

GetElectronMod

GetElectronObs

GetEntSpec

GetFlavPermQNOffd

GetFlavQNDiag

GetIntMatrix

GetL2Terms

GetLz2QNDiag

GetMPO

GetMPOSites

GetNeQNDiag

GetPairingMod

GetPairingObs

GetPairIntTerms

GetParityQNOffd

GetPinOrbQNDiag

GetPointValue

GetPolTerms

GetQNDiags

GetRotyQNOffd

GetSites

GetZnfChargeQNDiag

Laplacian

FuzzifiED.Libpath

Fuzzifino.Libpathino

Matrix

NormalOrder

FuzzifiED.NumThreads

FuzzifiED.OpenHelp!

Operator

OpMat

OpSum

ParticleHole

QNDiag

QNOffd

SBasis

SConfs

FuzzifiED.SilentStd

SimplifyTerms

SOperator

SparseMatrixCSC

SphereObs

SQNDiag

SQNOffd

StateDecompMat

STerm

STerms

StoreComps

StoreComps!

STransf

SweepOne

Term

Terms

Transf

TruncateQNDiag

– 71 –

https://docs.fuzzified.world/models/#FuzzifiED.AngModes
https://docs.fuzzified.world/core/#FuzzifiED.Basis
https://docs.fuzzified.world/core/#FuzzifiED.Confs
https://docs.fuzzified.world/extension/#CUDA.CUSPARSE.CuSparseMatrixCSC-Tuple{OpMat{ComplexF64}}
https://docs.fuzzified.world/itensors/#FuzzifiED.EasySweep-Tuple{String,%20MPO,%20MPS}
https://docs.fuzzified.world/core/#FuzzifiED.ElementType
https://docs.fuzzified.world/models/#FuzzifiED.FilterComponent-Tuple{AngModes,%20Any}
https://docs.fuzzified.world/models/#FuzzifiED.FilterL2-Tuple{AngModes,%20Number}
https://docs.fuzzified.world/models/#FuzzifiED.GetC2Terms-Tuple{Int64,%20Int64,%20Vector{%3C:AbstractMatrix{%3C:Number}}}
https://docs.fuzzified.world/models/#FuzzifiED.GetComponent-Tuple{SphereObs,%20Number,%20Number}
https://docs.fuzzified.world/core/#FuzzifiED.GetConfId-Tuple{Confs,%20Int64}
https://docs.fuzzified.world/core/#FuzzifiED.GetConfWeight-Tuple{Basis,%20Union{Vector{ComplexF64},%20Vector{Float64}},%20Int64}
https://docs.fuzzified.world/models/#FuzzifiED.GetDenIntTerms
https://docs.fuzzified.world/models/#FuzzifiED.GetDensityMod-Tuple{Int64,%20Int64,%20Matrix{%3C:Number}}
https://docs.fuzzified.world/models/#FuzzifiED.GetDensityObs-Tuple{Int64,%20Int64,%20Matrix{%3C:Number}}
https://docs.fuzzified.world/core/#FuzzifiED.GetEigensystem-Tuple{OpMat{ComplexF64},%20Int64}
https://docs.fuzzified.world/extension/#FuzzifiED.GetEigensystemCuda-Tuple{OpMat{ComplexF64},%20Int64}
https://docs.fuzzified.world/extension/#FuzzifiED.GetEigensystemKrylov-Tuple{OpMat{ComplexF64},%20Int64}
https://docs.fuzzified.world/models/#FuzzifiED.GetElectronMod-Tuple{Int64,%20Int64,%20Int64}
https://docs.fuzzified.world/models/#FuzzifiED.GetElectronObs-Tuple{Int64,%20Int64,%20Int64}
https://docs.fuzzified.world/core/#FuzzifiED.GetEntSpec-Tuple{Vector{%3C:Number},%20Basis,%20Vector{Vector{Vector{Int64}}},%20Vector{Vector{Vector{Int64}}}}
https://docs.fuzzified.world/models/#FuzzifiED.GetFlavPermQNOffd
https://docs.fuzzified.world/models/#FuzzifiED.GetFlavQNDiag
https://docs.fuzzified.world/models/#FuzzifiED.GetIntMatrix-Tuple{Int64,%20Vector{%3C:Number}}
https://docs.fuzzified.world/models/#FuzzifiED.GetL2Terms-Tuple{Int64,%20Int64}
https://docs.fuzzified.world/models/#FuzzifiED.GetLz2QNDiag-Tuple{Int64,%20Int64}
https://docs.fuzzified.world/itensors/#FuzzifiED.GetMPO-Tuple{String,%20Union{Sum{Scaled{ComplexF64,%20Prod{Op}}},%20Vector{Term}},%20Vector{%3C:Index}}
https://docs.fuzzified.world/itensors/#FuzzifiED.GetMPOSites-Tuple{String,%20Union{Sum{Scaled{ComplexF64,%20Prod{Op}}},%20Vector{Term}},%20Vector{QNDiag}}
https://docs.fuzzified.world/models/#FuzzifiED.GetNeQNDiag-Tuple{Int64}
https://docs.fuzzified.world/models/#FuzzifiED.GetPairingMod-Tuple{Int64,%20Int64,%20Matrix{%3C:Number}}
https://docs.fuzzified.world/models/#FuzzifiED.GetPairingObs-Tuple{Int64,%20Int64,%20Matrix{%3C:Number}}
https://docs.fuzzified.world/models/#FuzzifiED.GetPairIntTerms
https://docs.fuzzified.world/models/#FuzzifiED.GetParityQNOffd
https://docs.fuzzified.world/models/#FuzzifiED.GetPinOrbQNDiag
https://docs.fuzzified.world/models/#FuzzifiED.GetPointValue-Tuple{SphereObs,%20Float64,%20Float64}
https://docs.fuzzified.world/models/#FuzzifiED.GetPolTerms-Tuple{Int64,%20Int64,%20Matrix{%3C:Number}}
https://docs.fuzzified.world/itensors/#FuzzifiED.GetQNDiags-Tuple{Vector{Index{Vector{Pair{QN,%20Int64}}}}}
https://docs.fuzzified.world/models/#FuzzifiED.GetRotyQNOffd-Tuple{Int64,%20Int64}
https://docs.fuzzified.world/itensors/#FuzzifiED.GetSites-Tuple{Vector{QNDiag}}
https://docs.fuzzified.world/models/#FuzzifiED.GetZnfChargeQNDiag-Tuple{Int64,%20Int64}
https://docs.fuzzified.world/models/#FuzzifiED.Laplacian-Tuple{SphereObs}
https://docs.fuzzified.world/core/#FuzzifiED.Libpath
https://docs.fuzzified.world/fuzzifino/#FuzzifiED.Fuzzifino.Libpathino
https://docs.fuzzified.world/extension/#Base.Matrix-Tuple{OpMat}
https://docs.fuzzified.world/core/#FuzzifiED.NormalOrder-Tuple{Term}
https://docs.fuzzified.world/core/#FuzzifiED.NumThreads
https://docs.fuzzified.world/core/#FuzzifiED.OpenHelp!-Tuple{}
https://docs.fuzzified.world/core/#FuzzifiED.Operator
https://docs.fuzzified.world/core/#FuzzifiED.OpMat
https://docs.fuzzified.world/itensors/#ITensors.Ops.OpSum-Tuple{Vector{Term}}
https://docs.fuzzified.world/core/#FuzzifiED.ParticleHole-Tuple{Vector{Term}}
https://docs.fuzzified.world/core/#FuzzifiED.QNDiag
https://docs.fuzzified.world/core/#FuzzifiED.QNOffd
https://docs.fuzzified.world/fuzzifino/#FuzzifiED.Fuzzifino.SBasis
https://docs.fuzzified.world/fuzzifino/#FuzzifiED.Fuzzifino.SConfs
https://docs.fuzzified.world/core/#FuzzifiED.SilentStd
https://docs.fuzzified.world/core/#FuzzifiED.SimplifyTerms-Tuple{Vector{Term}}
https://docs.fuzzified.world/fuzzifino/#FuzzifiED.Fuzzifino.SOperator
https://docs.fuzzified.world/extension/#SparseArrays.SparseMatrixCSC-Tuple{OpMat}
https://docs.fuzzified.world/models/#FuzzifiED.SphereObs
https://docs.fuzzified.world/fuzzifino/#FuzzifiED.Fuzzifino.SQNDiag
https://docs.fuzzified.world/fuzzifino/#FuzzifiED.Fuzzifino.SQNOffd
https://docs.fuzzified.world/core/#FuzzifiED.StateDecompMat-Tuple{Vector{%3C:Number},%20Basis,%20Basis,%20Basis,%20Vector{%3C:Number},%20Vector{%3C:Number}}
https://docs.fuzzified.world/fuzzifino/#FuzzifiED.Fuzzifino.STerm
https://docs.fuzzified.world/fuzzifino/#FuzzifiED.Fuzzifino.STerms
https://docs.fuzzified.world/models/#FuzzifiED.StoreComps-Tuple{SphereObs}
https://docs.fuzzified.world/models/#FuzzifiED.StoreComps!-Tuple{SphereObs}
https://docs.fuzzified.world/fuzzifino/#FuzzifiED.Fuzzifino.STransf
https://docs.fuzzified.world/itensors/#FuzzifiED.SweepOne-Tuple{String,%20MPO,%20MPS,%20Int64}
https://docs.fuzzified.world/core/#FuzzifiED.Term
https://docs.fuzzified.world/core/#FuzzifiED.Terms
https://docs.fuzzified.world/core/#FuzzifiED.Transf
https://docs.fuzzified.world/itensors/#FuzzifiED.TruncateQNDiag-Tuple{Vector{QNDiag}}

Operations

amd + amd15

obs + obs

qnd + qnd

tms + tms

stms + stms

* amd

* obs

* qnd

* tms

* stms

amd * amd

obs * obs

qnf * qnf

tms * tms

stms * stms

mat * vec

op * vec

sop * vec

trs * vec

strs * vec

vec' * mat * vec

vec' * op * vec

vec' * sop * vec

amd'

obs'

tms'

stms'

tms ^ #

stms ^ #

15Here each symbol represents a specific type : amd is a AngModes, obs is a SphereObs, op is a Operator, sop

is a SOperator, mat is a OpMat, qnd is a QNDiag, sqnd is a SQNDiag, qnf is a QNOffd, sqnf is a SQNOffd, trs is

a Transf, strs is a STransf, vec is a Vector, # is a number.

– 72 –

https://docs.fuzzified.world/models/#Base.:+-Tuple{AngModes,%20AngModes}
https://docs.fuzzified.world/models/#Base.:+-Tuple{SphereObs,%20SphereObs}
https://docs.fuzzified.world/core/#Base.:+-Tuple{QNDiag,%20QNDiag}
https://docs.fuzzified.world/core/#Base.:+-Tuple{Vector{Term},%20Vector{Term}}
https://docs.fuzzified.world/fuzzifino/#Base.:+-Tuple{Vector{STerm},%20Vector{STerm}}
https://docs.fuzzified.world/models/#Base.:*-Tuple{Number,%20AngModes}
https://docs.fuzzified.world/models/#Base.:*-Tuple{Number,%20SphereObs}
https://docs.fuzzified.world/core/#Base.:*-Tuple{Int64,%20QNDiag}
https://docs.fuzzified.world/core/#Base.:*-Tuple{Number,%20Vector{Term}}
https://docs.fuzzified.world/fuzzifino/#Base.:*-Tuple{Number,%20Vector{STerm}}
https://docs.fuzzified.world/models/#Base.:*-Tuple{AngModes,%20AngModes}
https://docs.fuzzified.world/models/#Base.:*-Tuple{SphereObs,%20SphereObs}
https://docs.fuzzified.world/core/#Base.:*-Tuple{QNOffd,%20QNOffd}
https://docs.fuzzified.world/core/#Base.:*-Tuple{Vector{Term},%20Vector{Term}}
https://docs.fuzzified.world/fuzzifino/#Base.:*-Tuple{Vector{STerm},%20Vector{STerm}}
https://docs.fuzzified.world/core/#Base.:*-Tuple{OpMat{ComplexF64},%20Vector{ComplexF64}}
https://docs.fuzzified.world/core/#Base.:*-Tuple{Operator,%20Vector{ComplexF64}}
https://docs.fuzzified.world/fuzzifino/#Base.:*-Tuple{SOperator,%20Vector{ComplexF64}}
https://docs.fuzzified.world/core/#Base.:*-Tuple{Transf,%20Vector{ComplexF64}}
https://docs.fuzzified.world/fuzzifino/#Base.:*-Tuple{STransf,%20Vector{ComplexF64}}
https://docs.fuzzified.world/fuzzifino/#Base.:*-Tuple{Adjoint{ComplexF64,%20Vector{ComplexF64}},%20OpMat{ComplexF64},%20Vector{ComplexF64}}
https://docs.fuzzified.world/core/#Base.:*-Tuple{Adjoint{ComplexF64,%20Vector{ComplexF64}},%20Operator,%20Vector{ComplexF64}}
https://docs.fuzzified.world/fuzzifino/#Base.:*-Tuple{Adjoint{ComplexF64,%20Vector{ComplexF64}},%20SOperator,%20Vector{ComplexF64}}
https://docs.fuzzified.world/models/#Base.adjoint-Tuple{AngModes}
https://docs.fuzzified.world/models/#Base.adjoint-Tuple{SphereObs}
https://docs.fuzzified.world/core/#Base.adjoint-Tuple{Vector{Term}}
https://docs.fuzzified.world/fuzzifino/#Base.adjoint-Tuple{Vector{STerm}}
https://docs.fuzzified.world/core/#Base.:*-Tuple{Vector{Term},%20Vector{Term}}
https://docs.fuzzified.world/fuzzifino/#Base.:*-Tuple{Vector{STerm},%20Vector{STerm}}

References

[1] W. Zhu, C. Han, E. Huffman, J.S. Hofmann and Y.-C. He, Uncovering conformal symmetry in

the 3d Ising transition: State-operator correspondence from a quantum fuzzy sphere

regularization, Phys. Rev. X 13 (2023) 021009 [arXiv:2210.13482].

[2] L. Hu, Y.-C. He and W. Zhu, Operator product expansion coefficients of the 3d Ising criticality

via quantum fuzzy spheres, Phys. Rev. Lett. 131 (2023) 031601 [arXiv:2303.08844].

[3] C. Han, L. Hu, W. Zhu and Y.-C. He, Conformal four-point correlators of the three-dimensional

Ising transition via the quantum fuzzy sphere, Phys. Rev. B 108 (2023) 235123

[arXiv:2306.04681].

[4] Z. Zhou, L. Hu, W. Zhu and Y.-C. He, SO(5) deconfined phase transition under the fuzzy-sphere

microscope: Approximate conformal symmetry, pseudo-criticality, and operator spectrum, Phys.

Rev. X 14 (2024) 021044 [arXiv:2306.16435].

[5] B.-X. Lao and S. Rychkov, 3d Ising CFT and exact diagonalization on icosahedron: The power

of conformal perturbation theory, SciPost Phys. 15 (2023) 243 [arXiv:2307.02540].

[6] L. Hu, Y.-C. He and W. Zhu, Solving conformal defects in 3d conformal field theory using fuzzy

sphere regularization, Nature Commun. 15 (2024) 9013 [arXiv:2308.01903].

[7] J.S. Hofmann, F. Goth, W. Zhu, Y.-C. He and E. Huffman, Quantum Monte Carlo simulation of

the 3d Ising transition on the fuzzy sphere, SciPost Phys. Core 7 (2024) 028

[arXiv:2310.19880].

[8] C. Han, L. Hu and W. Zhu, Conformal operator content of the Wilson-Fisher transition on fuzzy

sphere bilayers, Phys. Rev. B 110 (2024) 115113 [arXiv:2312.04047].

[9] Z. Zhou, D. Gaiotto, Y.-C. He and Y. Zou, The 𝑔-function and defect changing operators from

wavefunction overlap on a fuzzy sphere, SciPost Phys. 17 (2024) 021 [arXiv:2401.00039].

[10] L. Hu, W. Zhu and Y.-C. He, Entropic 𝐹 -function of 3d Ising conformal field theory via the fuzzy

sphere regularization, arXiv:2401.17362.

[11] G. Cuomo, Y.-C. He and Z. Komargodski, Impurities with a cusp: general theory and 3d Ising,

JHEP 11 (2024) 061 [arXiv:2406.10186].

[12] Z. Zhou and Y. Zou, Studying the 3d Ising surface CFTs on the fuzzy sphere, arXiv:2407.15914.

[13] M. Dedushenko, Ising BCFT from fuzzy hemisphere, arXiv:2407.15948.

– 73 –

https://doi.org/10.1103/PhysRevX.13.021009
https://arxiv.org/abs/2210.13482
https://doi.org/10.1103/PhysRevLett.131.031601
https://arxiv.org/abs/2303.08844
https://doi.org/10.1103/PhysRevB.108.235123
https://arxiv.org/abs/2306.04681
https://doi.org/10.1103/PhysRevX.14.021044
https://doi.org/10.1103/PhysRevX.14.021044
https://arxiv.org/abs/2306.16435
https://doi.org/10.21468/SciPostPhys.15.6.243
https://arxiv.org/abs/2307.02540
https://doi.org/10.1038/s41467-024-47978-y
https://arxiv.org/abs/2308.01903
https://doi.org/10.21468/SciPostPhysCore.7.2.028
https://arxiv.org/abs/2310.19880
https://doi.org/10.1103/PhysRevB.110.115113
https://arxiv.org/abs/2312.04047
https://doi.org/10.21468/SciPostPhys.17.1.021
https://arxiv.org/abs/2401.00039
https://arxiv.org/abs/2401.17362
https://doi.org/10.1007/JHEP11(2024)061
https://arxiv.org/abs/2406.10186
https://arxiv.org/abs/2407.15914
https://arxiv.org/abs/2407.15948

[14] G. Fardelli, A.L. Fitzpatrick and E. Katz, Constructing the infrared conformal generators on the

fuzzy sphere, arXiv:2409.02998.

[15] R. Fan, Note on explicit construction of conformal generators on the fuzzy sphere,

arXiv:2409.08257.

[16] Z. Zhou and Y.-C. He, A new series of 3d CFTs with Sp(𝑁) global symmetry on fuzzy sphere,

arXiv:2410.00087.

[17] C. Voinea, R. Fan, N. Regnault and Z. Papić, Regularizing 3d conformal field theories via

anyons on the fuzzy sphere, arXiv:2411.15299.

[18] M. Fishman, S.R. White and E.M. Stoudenmire, The ITensor software library for tensor network

calculations, SciPost Phys. Codeb. (2022) 4 [arXiv:2007.14822].

[19] S. Rychkov, EPFL Lectures on Conformal Field Theory in 𝐷 ≥ 3 Dimensions, Briefs in

Physics, Springer (1, 2016), 10.1007/978-3-319-43626-5, [arXiv:1601.05000].

[20] D. Simmons-Duffin, The conformal bootstrap, in Theoretical Advanced Study Institute in

Elementary Particle Physics: New Frontiers in Fields and Strings, pp. 1–74, 2017, DOI

[arXiv:1602.07982].

[21] A.M. Polyakov, Conformal symmetry of critical fluctuations, JETP Lett. 12 (1970) 381.

[22] J.L. Cardy, Scaling and Renormalization in Statistical Physics, Cambridge Lecture Notes in

Physics, Cambridge University Press (1996).

[23] S. Sachdev, Quantum Phase Transitions, Cambridge University Press, 2 ed. (2011),

10.1017/CBO9780511973765.

[24] J. Polchinski, String theory. Vol. 1: An introduction to the bosonic string, Cambridge

Monographs on Mathematical Physics, Cambridge University Press (12, 2007),

10.1017/CBO9780511816079.

[25] J.M. Maldacena, The large-𝑁 limit of superconformal field theories and supergravity, Adv.

Theor. Math. Phys. 2 (1998) 231.

[26] A.B. Zamolodchikov, Irreversibility of the flux of the renormalization group in a 2D field theory,

JETP Lett. 43 (1986) 730.

[27] P. Di Francesco, P. Mathieu and D. Sénéchal, Conformal field theory, Graduate texts in

contemporary physics, Springer, New York, NY (1997), 10.1007/978-1-4612-2256-9.

– 74 –

https://arxiv.org/abs/2409.02998
https://arxiv.org/abs/2409.08257
https://arxiv.org/abs/2410.00087
https://arxiv.org/abs/2411.15299
https://doi.org/10.21468/SciPostPhysCodeb.4
https://arxiv.org/abs/2007.14822
https://doi.org/10.1007/978-3-319-43626-5
https://arxiv.org/abs/1601.05000
https://doi.org/10.1142/9789813149441_0001
https://arxiv.org/abs/1602.07982
https://doi.org/10.1017/CBO9780511973765
https://doi.org/10.1017/CBO9780511816079
https://doi.org/10.1007/978-1-4612-2256-9

[28] P.H. Ginsparg, Applied conformal field theory, in Les Houches Summer School in Theoretical

Physics: Fields, Strings, Critical Phenomena, 9, 1988 [arXiv:hep-th/9108028].

[29] A.A. Belavin, A.M. Polyakov and A.B. Zamolodchikov, Infinite conformal symmetry in

two-dimensional quantum field theory, Nucl. Phys. B 241 (1984) 333.

[30] J. Wess and B. Zumino, Consequences of anomalous Ward identities, Phys. Lett. B 37 (1971)

95.

[31] E. Witten, Nonabelian bosonization in two-dimensions, Commun. Math. Phys. 92 (1984) 455.

[32] D. Poland, S. Rychkov and A. Vichi, The conformal bootstrap: Theory, numerical techniques,

and applications, Rev. Mod. Phys. 91 (2019) 015002 [arXiv:1805.04405].

[33] S. Rychkov and N. Su, New developments in the numerical conformal bootstrap, Rev. Mod. Phys.

96 (2024) 045004 [arXiv:2311.15844].

[34] S. El-Showk, M.F. Paulos, D. Poland, S. Rychkov, D. Simmons-Duffin and A. Vichi, Solving the

3d Ising model with the conformal bootstrap, Phys. Rev. D 86 (2012) 025022

[arXiv:1203.6064].

[35] F. Kos, D. Poland, D. Simmons-Duffin and A. Vichi, Precision islands in the Ising and O(𝑁)
models, JHEP 08 (2016) 036 [arXiv:1603.04436].

[36] F. Kos, D. Poland, D. Simmons-Duffin and A. Vichi, Bootstrapping the O(𝑁) archipelago, JHEP

11 (2015) 106 [arXiv:1504.07997].

[37] L. Iliesiu, F. Kos, D. Poland, S.S. Pufu, D. Simmons-Duffin and R. Yacoby, Bootstrapping 3d

fermions, JHEP 03 (2016) 120 [arXiv:1508.00012].

[38] A.M. Ferrenberg, J. Xu and D.P. Landau, Pushing the limits of Monte Carlo simulations for the

three-dimensional Ising model, Phys. Rev. E 97 (2018) 043301 [arXiv:1806.03558].

[39] A.W. Sandvik, Computational studies of quantum spin systems, AIP Conf. Proc. 1297 (2010)

135 [arXiv:1101.3281].

[40] M.E. Fisher and M.N. Barber, Scaling theory for finite-size effects in the critical region, Phys.

Rev. Lett. 28 (1972) 1516.

[41] D. Pappadopulo, S. Rychkov, J. Espin and R. Rattazzi, OPE convergence in conformal field

theory, Phys. Rev. D 86 (2012) 105043 [arXiv:1208.6449].

[42] R.C. Brower and E.K. Owen, The Ising model on 𝕊2, arXiv:2407.00459.

– 75 –

https://arxiv.org/abs/hep-th/9108028
https://doi.org/https://doi.org/10.1016/0550-3213(84)90052-X
https://doi.org/10.1016/0370-2693(71)90582-X
https://doi.org/10.1016/0370-2693(71)90582-X
https://doi.org/10.1007/BF01215276
https://doi.org/10.1103/RevModPhys.91.015002
https://arxiv.org/abs/1805.04405
https://doi.org/10.1103/RevModPhys.96.045004
https://doi.org/10.1103/RevModPhys.96.045004
https://arxiv.org/abs/2311.15844
https://doi.org/10.1103/PhysRevD.86.025022
https://arxiv.org/abs/1203.6064
https://doi.org/10.1007/JHEP08(2016)036
https://arxiv.org/abs/1603.04436
https://doi.org/10.1007/JHEP11(2015)106
https://doi.org/10.1007/JHEP11(2015)106
https://arxiv.org/abs/1504.07997
https://doi.org/10.1007/JHEP03(2016)120
https://arxiv.org/abs/1508.00012
https://doi.org/10.1103/PhysRevE.97.043301
https://arxiv.org/abs/1806.03558
https://doi.org/10.1063/1.3518900
https://doi.org/10.1063/1.3518900
https://arxiv.org/abs/1101.3281
https://doi.org/10.1103/PhysRevLett.28.1516
https://doi.org/10.1103/PhysRevLett.28.1516
https://doi.org/10.1103/PhysRevD.86.105043
https://arxiv.org/abs/1208.6449
https://arxiv.org/abs/2407.00459

[43] J. Madore, The fuzzy sphere, Class. Quant. Grav. 9 (1992) 69.

[44] F.D.M. Haldane, Fractional quantization of the Hall effect: A hierarchy of incompressible

quantum fluid states, Phys. Rev. Lett. 51 (1983) 605.

[45] T.T. Wu and C.N. Yang, Dirac monopole without strings: Monopole harmonics, Nucl. Phys. B

107 (1976) 365.

[46] M. Greiter, Landau level quantization on the sphere, Phys. Rev. B 83 (2011) 115129

[arXiv:1101.3943].

[47] K. Hasebe, Hopf maps, lowest Landau level, and fuzzy spheres, SIGMA 6 (2010) 071

[arXiv:1009.1192].

[48] V. Pasquier, Skyrmions in the quantum Hall effect and noncommutative solitons, Phys. Lett. B

490 (2000) 258 [arXiv:hep-th/0007176].

[49] S.M. Girvin, Spin and isospin: Exotic order in quantum Hall ferromagnets, in The multifaceted

skyrmion, G.E. Brown and M. Rho, eds., pp. 217–231 (2010), DOI.

[50] R.C. Myers and A. Sinha, Seeing a 𝑐-theorem with holography, Phys. Rev. D 82 (2010) 046006

[arXiv:1006.1263].

[51] H. Casini, M. Huerta and R.C. Myers, Towards a derivation of holographic entanglement

entropy, JHEP 05 (2011) 036 [arXiv:1102.0440].

[52] D.L. Jafferis, I.R. Klebanov, S.S. Pufu and B.R. Safdi, Towards the 𝐹 -theorem: 𝒩 = 2 field

theories on the three-sphere, JHEP 06 (2011) 102 [arXiv:1103.1181].

[53] I.R. Klebanov, S.S. Pufu and B.R. Safdi, 𝐹 -theorem without supersymmetry, JHEP 10 (2011)

038 [arXiv:1105.4598].

[54] H. Casini and M. Huerta, On the RG running of the entanglement entropy of a circle, Phys. Rev.

D 85 (2012) 125016 [arXiv:1202.5650].

[55] A. Sterdyniak, A. Chandran, N. Regnault, B.A. Bernevig and P. Bonderson, Real-space

entanglement spectrum of quantum Hall states, Phys. Rev. B 85 (2012) 125308

[arXiv:1110.2810].

[56] J. Dubail, N. Read and E.H. Rezayi, Real-space entanglement spectrum of quantum Hall

systems, Phys. Rev. B 85 (2012) 115321 [arXiv:1111.2811].

[57] M.P. Zaletel and R.S.K. Mong, Exact matrix product states for quantum hall wave functions,

Phys. Rev. B 86 (2012) 245305 [arXiv:1208.4862].

– 76 –

https://doi.org/10.1088/0264-9381/9/1/008
https://doi.org/10.1103/PhysRevLett.51.605
https://doi.org/10.1016/0550-3213(76)90143-7
https://doi.org/10.1016/0550-3213(76)90143-7
https://doi.org/10.1103/PhysRevB.83.115129
https://arxiv.org/abs/1101.3943
https://doi.org/10.3842/SIGMA.2010.071
https://arxiv.org/abs/1009.1192
https://doi.org/10.1016/S0370-2693(00)00965-5
https://doi.org/10.1016/S0370-2693(00)00965-5
https://arxiv.org/abs/hep-th/0007176
https://doi.org/10.1142/9789814280709_0009
https://doi.org/10.1103/PhysRevD.82.046006
https://arxiv.org/abs/1006.1263
https://doi.org/10.1007/JHEP05(2011)036
https://arxiv.org/abs/1102.0440
https://doi.org/10.1007/JHEP06(2011)102
https://arxiv.org/abs/1103.1181
https://doi.org/10.1007/JHEP10(2011)038
https://doi.org/10.1007/JHEP10(2011)038
https://arxiv.org/abs/1105.4598
https://doi.org/10.1103/PhysRevD.85.125016
https://doi.org/10.1103/PhysRevD.85.125016
https://arxiv.org/abs/1202.5650
https://doi.org/10.1103/PhysRevB.85.125308
https://arxiv.org/abs/1110.2810
https://doi.org/10.1103/PhysRevB.85.115321
https://arxiv.org/abs/1111.2811
https://doi.org/10.1103/PhysRevB.86.245305
https://arxiv.org/abs/1208.4862

[58] I.D. Rodriguez, S.H. Simon and J.K. Slingerland, Evaluation of ranks of real space and particle

entanglement spectra for large systems, Phys. Rev. Lett. 108 (2012) 256806

[arXiv:1111.3634].

[59] T. Senthil, A. Vishwanath, L. Balents, S. Sachdev and M.P.A. Fisher, Deconfined quantum

critical points, Science 303 (2004) 1490 [arXiv:cond-mat/0311326].

[60] T. Senthil, L. Balents, S. Sachdev, A. Vishwanath and M.P.A. Fisher, Quantum criticality

beyond the landau-ginzburg-wilson paradigm, Phys. Rev. B 70 (2004) 144407

[arXiv:cond-mat/0312617].

[61] T. Senthil, Deconfined quantum critical points: a review, arXiv:2306.12638.

[62] A. Nahum, P. Serna, J.T. Chalker, M. Ortuño and A.M. Somoza, Emergent so(5) symmetry at the

néel to valence-bond-solid transition, Phys. Rev. Lett. 115 (2015) 267203 [arXiv:1508.06668].

[63] C. Wang, A. Nahum, M.A. Metlitski, C. Xu and T. Senthil, Deconfined quantum critical points:

symmetries and dualities, Phys. Rev. X 7 (2017) 031051 [arXiv:1703.02426].

[64] V. Gorbenko, S. Rychkov and B. Zan, Walking, weak first-order transitions, and complex CFTs,

JHEP 10 (2018) 108 [arXiv:1807.11512].

[65] M. Ippoliti, R.S.K. Mong, F.F. Assaad and M.P. Zaletel, Half-filled Landau levels: A continuum

and sign-free regularization for three-dimensional quantum critical points, Phys. Rev. B 98

(2018) 235108 [arXiv:1810.00009].

[66] Z. Wang, M.P. Zaletel, R.S.K. Mong and F.F. Assaad, Phases of the (2 + 1) dimensional SO(5)
nonlinear sigma model with topological term, Phys. Rev. Lett. 126 (2021) 045701

[arXiv:2003.08368].

[67] B.-B. Chen, X. Zhang, Y. Wang, K. Sun and Z.Y. Meng, Phases of (2 + 1)d SO(5) nonlinear
sigma model with a topological term on a sphere: Multicritical point and disorder phase, Phys.

Rev. Lett. 132 (2024) 246503 [arXiv:2307.05307].

[68] B.-B. Chen, X. Zhang and Z. Yang Meng, Emergent conformal symmetry at the multicritical

point of (2 + 1)d SO(5) model with Wess-Zumino-Witten term on a sphere, Phys. Rev. B 110

(2024) 125153 [arXiv:2405.04470].

[69] K.G. Wilson and M.E. Fisher, Critical exponents in 3.99 dimensions, Phys. Rev. Lett. 28

(1972) 240.

– 77 –

https://doi.org/10.1103/PhysRevLett.108.256806
https://arxiv.org/abs/1111.3634
https://doi.org/10.1126/science.1091806
https://arxiv.org/abs/cond-mat/0311326
https://doi.org/10.1103/PhysRevB.70.144407
https://arxiv.org/abs/cond-mat/0312617
https://arxiv.org/abs/2306.12638
https://doi.org/10.1103/PhysRevLett.115.267203
https://arxiv.org/abs/1508.06668
https://doi.org/10.1103/PhysRevX.7.031051
https://arxiv.org/abs/1703.02426
https://doi.org/10.1007/JHEP10(2018)108
https://arxiv.org/abs/1807.11512
https://doi.org/10.1103/PhysRevB.98.235108
https://doi.org/10.1103/PhysRevB.98.235108
https://arxiv.org/abs/1810.00009
https://doi.org/10.1103/PhysRevLett.126.045701
https://arxiv.org/abs/2003.08368
https://doi.org/10.1103/PhysRevLett.132.246503
https://doi.org/10.1103/PhysRevLett.132.246503
https://arxiv.org/abs/2307.05307
https://doi.org/10.1103/PhysRevB.110.125153
https://doi.org/10.1103/PhysRevB.110.125153
https://arxiv.org/abs/2405.04470
https://doi.org/10.1103/PhysRevLett.28.240
https://doi.org/10.1103/PhysRevLett.28.240

[70] Z. Komargodski and N. Seiberg, A symmetry breaking scenario for QCD3, JHEP 01 (2018)

109 [arXiv:1706.08755].

[71] M. Billó, M. Caselle, D. Gaiotto, F. Gliozzi, M. Meineri and R. Pellegrini, Line defects in the 3d

Ising model, JHEP 07 (2013) 055 [arXiv:1304.4110].

[72] M. Billò, V. Gonçalves, E. Lauria and M. Meineri, Defects in conformal field theory, JHEP 04

(2016) 091 [arXiv:1601.02883].

[73] A. Hanke, Critical adsorption on defects in ising magnets and binary alloys, Phys. Rev. Lett. 84

(2000) 2180.

[74] A. Allais, Magnetic defect line in a critical Ising bath, arXiv:1412.3449.

[75] A. Allais and S. Sachdev, Spectral function of a localized fermion coupled to the Wilson-Fisher

conformal field theory, Phys. Rev. B 90 (2014) 035131 [arXiv:1406.3022].

[76] W.H. Pannell and A. Stergiou, Line defect RG flows in the 𝜖 expansion, JHEP 06 (2023) 186

[arXiv:2302.14069].

[77] G. Cuomo, Z. Komargodski and A. Raviv-Moshe, Renormalization group flows on line defects,

Phys. Rev. Lett. 128 (2022) 021603 [arXiv:2108.01117].

[78] H. Casini, I. Salazar Landea and G. Torroba, Entropic 𝑔 theorem in general spacetime

dimensions, Phys. Rev. Lett. 130 (2023) 111603 [arXiv:2212.10575].

[79] I. Affleck and A.W.W. Ludwig, The fermi edge singularity and boundary condition changing

operators, J. Phys. A 27 (1994) 5375 [arXiv:cond-mat/9405057].

[80] I. Affleck, Boundary condition changing operators in conformal field theory and condensed

matter physics, Nucl. Phys. B Proc. Suppl. 58 (1997) 35 [arXiv:hep-th/9611064].

[81] M.A. Metlitski, Boundary criticality of the O(𝑁) model in 𝑑 = 3 critically revisited, SciPost

Phys. 12 (2022) 131 [arXiv:2009.05119].

[82] A. Krishnan and M.A. Metlitski, A plane defect in the 3d O(𝑁) model, SciPost Phys. 15 (2023)

090 [arXiv:2301.05728].

[83] S. Giombi and B. Liu, Notes on a surface defect in the O(𝑁) model, JHEP 12 (2023) 004

[arXiv:2305.11402].

[84] R.B. Laughlin, Anomalous quantum Hall effect: An incompressible quantum fluid with

fractionally charged excitations, Phys. Rev. Lett. 50 (1983) 1395.

– 78 –

https://doi.org/10.1007/JHEP01(2018)109
https://doi.org/10.1007/JHEP01(2018)109
https://arxiv.org/abs/1706.08755
https://doi.org/10.1007/JHEP07(2013)055
https://arxiv.org/abs/1304.4110
https://doi.org/10.1007/JHEP04(2016)091
https://doi.org/10.1007/JHEP04(2016)091
https://arxiv.org/abs/1601.02883
https://doi.org/10.1103/PhysRevLett.84.2180
https://doi.org/10.1103/PhysRevLett.84.2180
https://arxiv.org/abs/1412.3449
https://doi.org/10.1103/PhysRevB.90.035131
https://arxiv.org/abs/1406.3022
https://doi.org/10.1007/JHEP06(2023)186
https://arxiv.org/abs/2302.14069
https://doi.org/10.1103/PhysRevLett.128.021603
https://arxiv.org/abs/2108.01117
https://doi.org/10.1103/PhysRevLett.130.111603
https://arxiv.org/abs/2212.10575
https://doi.org/10.1088/0305-4470/27/16/007
https://arxiv.org/abs/cond-mat/9405057
https://doi.org/10.1016/S0920-5632(97)00411-8
https://arxiv.org/abs/hep-th/9611064
https://doi.org/10.21468/SciPostPhys.12.4.131
https://doi.org/10.21468/SciPostPhys.12.4.131
https://arxiv.org/abs/2009.05119
https://doi.org/10.21468/SciPostPhys.15.3.090
https://doi.org/10.21468/SciPostPhys.15.3.090
https://arxiv.org/abs/2301.05728
https://doi.org/10.1007/JHEP12(2023)004
https://arxiv.org/abs/2305.11402
https://doi.org/10.1103/PhysRevLett.50.1395

[85] T.T. Wu and C.N. Yang, Some properties of monopole harmonics, Phys. Rev. D 16 (1977) 1018.

[86] Y.M. Shnir, Magnetic Monopoles, Text and Monographs in Physics, Springer, Berlin/Heidelberg

(2005), 10.1007/3-540-29082-6.

[87] L.C. Biedenharn and J.D. Louck, Angular Momentum in Quantum Physics: Theory and

Application, Encyclopedia of Mathematics and its Applications, Cambridge University Press

(1984).

[88] S.A. Trugman and S. Kivelson, Exact results for the fractional quantum hall effect with general

interactions, Phys. Rev. B 31 (1985) 5280.

[89] Y. Zou, A. Milsted and G. Vidal, Conformal fields and operator product expansion in critical

quantum spin chains, Phys. Rev. Lett. 124 (2020) 040604 [arXiv:1901.06439].

[90] W.E. Arnoldi, The principle of minimized iterations in the solution of the matrix eigenvalue

problem, Quart. Appl. Math. 9 (1951) 17.

[91] R.B. Lehoucq, D.C. Sorensen and C. Yang, ARPACK Users’ Guide, Society for Industrial and

Applied Mathematics (1998), 10.1137/1.9780898719628.

[92] S.R. White, Density matrix formulation for quantum renormalization groups, Phys. Rev. Lett.

69 (1992) 2863.

[93] U. Schollwock, The density-matrix renormalization group, Rev. Mod. Phys. 77 (2005) 259

[arXiv:cond-mat/0409292].

[94] U. Schollwoeck, The density-matrix renormalization group in the age of matrix product states,

Annals Phys. 326 (2011) 96 [arXiv:1008.3477].

– 79 –

https://doi.org/10.1103/PhysRevD.16.1018
https://doi.org/10.1007/3-540-29082-6
https://doi.org/10.1103/PhysRevB.31.5280
https://doi.org/10.1103/PhysRevLett.124.040604
https://arxiv.org/abs/1901.06439
https://doi.org/10.1137/1.9780898719628
https://doi.org/10.1103/PhysRevLett.69.2863
https://doi.org/10.1103/PhysRevLett.69.2863
https://doi.org/10.1103/RevModPhys.77.259
https://arxiv.org/abs/cond-mat/0409292
https://doi.org/10.1016/j.aop.2010.09.012
https://arxiv.org/abs/1008.3477

	Purpose and outline
	I Review of fuzzy sphere
	Introduction
	Conformal field theory
	Fuzzy sphere

	Review of existing works
	Accessing various conformal data
	Realising various 3d CFTs
	Studying conformal defects and boundaries
	Other works on the fuzzy sphere

	Model construction
	Projection onto the lowest Landau level
	Density operator
	Density-density interaction
	Interaction in terms of pseudopotentials
	Operator spectrum and search for conformal point
	Local observables
	Conformal generators

	Numerical methods
	Exact diagonalisation (ED)
	Density matrix renormalisation group (DMRG)

	II Numerical calculation with FuzzifiED
	Installation and usage
	Exact diagonalisation
	Setup
	Constructing the configurations
	Constructing the basis
	Recording the many-body operator terms
	Generating sparse matrix
	Finding eigenstates
	Inner product of states, operators and transformations
	Measuring local observables
	Measuring the entanglement
	Fuzzifino — module for boson-fermion mixture

	Density matrix renormalisation group
	DMRG with ITensor
	The EasySweep extension

	Practical examples
	Data structures in exact diagonalisation
	Construction of Lin table
	Compressed sparse column (CSC) sparse matrix
	Indexing the boson configurations

	Tutorial code
	ED using core functions
	ED using built-in models
	DMRG using format conversion into ITensor
	DMRG with Easy Sweep

	Glossary for interfaces in FuzzifiED
	References

